Как рассчитать тепловую мощность радиатора отопления

Расчет отопления: как выяснить нужную тепловую мощность

Эффективность и экономичность работы сети системы обогрева зависит от верно подобранной мощности нагревательного котла, теплоотдачи радиаторов отопления и конфигурации трубопроводов, транспортирующих теплоноситель. Дабы не совершить ошибку в выборе климатического оборудования, нужно верно выполнить расчет потребления тепловой энергии на отопление.

В большинстве случаев это делают эксперты-теплотехники, но если вы строите дом своими руками, то произвести все вычисления окажет помощь инструкция, нижеприведенная.

Перед началом работы по конструированию отопления необходимо вычислить потребность жилища в тепловой энергии

Этапы проведения расчетов

Теплотехнический расчет отопительной сети для жилого помещения,здания коммерческого назначения либо производственного цеха производится в соответствии с СНиП(строительным нормам) 2.04.05-91, каковые носят название «Отопление, вентиляция и кондиционирование».

Ими закреплена методика расчета потребности тепловой энергии на отопление, которой пользуются как личные застройщики при постройке собственных домов, так и работники ЖКХ при монтаже либо модернизации климатических систем многоквартирных домов.

В соответствии с вышеупомянутому документу, расчет тепловой энергии включает в себя пара этапов. Краткое описание каждого из них приведено в таблице.

  • или вы совершили ошибку в расчетах,
  • или нужно безотлагательно принимать меры по утеплению жилища.
  • 75 оС – котел,
  • 65 оС – радиатор отопления,
  • 20 оС – температура окружающей среды в комнате.

При таком разбросе сконструированная вами система водяного отопления будет соответствовать требованиям норматива EN 442 «Тепловая мощность отопительных устройств».

Совет! С целью проведения всех расчетов возможно применять калькулятор. Но целесообразнее воспользоваться тем либо иным программным комплексом. Компьютерная программа разрешит более точно учесть все нужные факторы и сократит время, затрачиваемое на проектирование.

Компьютерная программа поможет правильно произвести все необходимые расчеты

По окончании того как будет сделан расчет тепла,затрачиваемого на обогрев жилища, не забудьте вычислить количество затрат на приобретение выбранных теплоносителей. Быть может,цена будет через чур громадна, в связи с чем нужно будет искать альтернативные либо комбинированные методы обогрева собственного жилища.

Методика проведения теплового расчета

Нужные данные

Перед тем как производить расчет теплоэнергии на отопление,направляться собрать информацию о здании, в котором предстоит монтировать климатическую сеть.

  1. Проект будущего либо существующего дома. В нем в обязательном порядке должны быть проставлены геометрические размеры комнат, и наружные габариты постройки. Помимо этого, пригодятся размеры и количество оконных и дверных проемов.

Для расчета мощности отопления необходимо иметь проект дома

  1. Климатические условия местности, где расположен дом. Вам необходимо уточнить длительность отопительного сезона, ориентацию дома по сторонам света, средние за сутки и среднемесячные температуры и другие подобные сведения.
  2. Материал и теплоизоляция стен. От них зависит, какое количество тепловой энергии будет рассеиваться непродуктивно через разные элементы здания.
  3. Конструкция и материалы пола и потолка. Указанные поверхности обычно являются обстоятельством сильных потерь тепла. В случае если это так, целесообразно провести утепление напольного покрытия и чердачного перекрытия, по окончании чего вычислить мощность системы отопления заново.

Формула для вычисления тепловой мощности климатической сети

Для всех инженерных расчетов вам пригодится далеко не одна формула расчета отопления. Так как, как упоминалось в прошлых разделах, нужно установить множество серьёзных характеристик системы обогрева.

Обратите внимание! направляться весьма шепетильно производить расчет: отопление, как и водопровод либо канализация – достаточно сложные и дорогостоящие климатические сети. В случае если при проектировании были допущены ошибки, потребуется модернизация по ходу строительства. А цена таких мероприятий время от времени выливается в достаточно большую сумму.

Для начала нужно узнать, насколько мощный котел нужно устанавливать в доме

Самым серьёзным параметром при расчете есть мощность котла отопления, поскольку именно он выступает центральным элементом климатической сети. Для этого употребляется следующая формула:

Мкотла = Tдома * 20%, где:

  • Тдома– потребность в тепловой энергии дома, где производится монтаж отопления
  • 20% — коэффициент, учитывающий непредвиденные события. К ним относятся падение давления в магистральной газовой сети, сильные морозы, неучтенные потери тепла при открывании дверей и окон, и другие факторы.

Определение потерь тепла

Дабы вычислить потребность дома в тепловой энергии необходимо знать количество потерь тепла, происходящих через стенки, пол и потолок. Для этого возможно воспользоваться таблицей, в которой указана теплопроводность разных материалов.

Наименование Толщина, см Коэффициент теплопроводности
Пенопласт 0,11 0,037
Стекловата 0,12 0,041
Минеральное волокно 0,13 0,044
Строганный брус 0,44 0,15
Газобетон 0,54 0,183
Пенобетон 0,62 0,21
Кирпич 0,79 0,27

На фото - сравнение коэффициентов теплопроводности различных материалов

Но, дабы верно выяснить потери тепла и вычислить мощность котла, знать коэффициент теплопроводности материалов будет не хватает.

Необходимо кроме этого включить в формулу расчета определенные поправки:

  1. Конструкция и материал применяемых стеклопакетов:

От количества стекол в окне зависит объем тепла, уходящего сквозь окна

  1. Площадь остекления дома. Тут все просто. Чем больше величина соотношения площади окон к площади пола, тем больше потери тепла здания. Для расчетов возможно взять следующие коэффициенты:

Чем больше в доме окон, тем больше теплопотери

  1. Средняя за сутки температура внешнего воздуха. Эту поправку также необходимо учитывать, поскольку при через чур низких значениях коэффициент потерь тепла через стенки и окна возрастает. Для расчетов принимаются следующие значения:
  1. Количество наружных стен. В случае если помещение расположено в дома, то с наружным воздухом соприкасается лишь одна стенки – та, где находится окно. Но, угловые помещения либо комнаты в маленьких зданиях смогут иметь и две, и три, и четыре наружных стенки. В этом случае нужно учитывать следующие поправочные коэффициенты:
  • одна комната – 1,
  • две комнаты –1,2,
  • три комнаты – 1,22,
  • четыре комнаты – 1,33
  1. Количество этажей. Как и в прошлом случае, количество этажей и (либо) наличие чердака воздействует на теплопотери. В этом случае необходимо взять следующие значения для поправок:
  • наличие нескольких этажей – 0,82,
  • утепленная кровля либо чердачное перекрытие – 0,91,
  • неутепленный потолок – 1.

Количество этажей в доме также влияет на теплопроводность конструкций

  1. Расстояние между стенами и потолком. Как мы знаем, громадная высота потолков увеличивает количество комнаты, исходя из этого на ее отопление нужно тратить большее количество тепла. Коэффициенты в этом случае используются следующие:

Дабы вычислить отопление, нужно перемножить все вышеперечисленные коэффициенты и выяснить Тдомапо следующей формуле:

Тдома = Пуд * Кнеспециализированный * S, где:

  • Пуд – удельные потери тепла (в большинстве случаев, 100 Ватт/м2)
  • Кнеспециализированный– неспециализированная поправка, полученная методом перемножения всех вышеперечисленных коэффициентов,
  • S –площадь домостроения.

Расчет тепловой мощности радиаторов

В качестве устройств, нагревающих воздушное пространство в комнатах, употребляются батареи отопления. Они складываются из нескольких секций. Их количество зависит от выбранного материала и определяется исходя из мощности одного элемента, измеряемого в Ваттах.

Приведем значения для самых популярных моделей радиаторов:

  • чугунные – 110 Ватт,
  • стальные – 85 Ватт,
  • алюминиевые – 175 Ватт,
  • биметаллические – 199 Ватт.

Это значение направляться поделить на 100, в следствии чего окажется площадь, обогреваемая одной секцией батареи.

Количество секций в батарее отопления зависит от выбранного материала радиатора и площади комнаты

Затем определяется нужное количество секций. Тут все просто. Необходимо площадь комнаты, где будет установлена батарея, поделить на мощность одного элемента радиатора.

Кроме этого необходимо учитывать поправки:

  • для угловой комнаты нужное количество секций целесообразно расширить на 2 либо 3,
  • если вы планируете закрыть радиатор декоративной панелью, кроме этого позаботьтесь о некотором повышении размера батареи,
  • в случае в то время, когда окно оборудовано широким подоконником, нужно вставить в него переточную вентиляционную решетку.

Обратите внимание! Подобный метод расчета может употребляться лишь в том случае, в то время, когда высота потолков в помещении стандартная – 2,7 метра. В любой другой ситуации должны использоваться дополнительные поправочные коэффициенты.

Вывод

Расчет тепловой мощности системы отопления – достаточно сложное мероприятие, которое, однако, возможно провести и самостоятельно, воспользовавшись предложенной вашему вниманию информацией. Но не забывайте, что также необходимо вычислить еще и другие параметры. Более детально смотрите в видео, размещенном в данной статье.

Статьи "на заметку"

Расчет реальной мощности радиатора отопления для дома

Каждый прибор отопления (радиатор, конвектор) обладает теплоотдачей – основным свойством, которое определяет возможность его использования для обогрева помещения (комнаты) в доме или квартире. Характеристика теплоотдачи зависит от конструкции и габаритов прибора, а указывается в технической документации (паспорте устройства) в Ваттах (Вт).
Например, для стального панельного радиатора Kermi FTV 22/500/1400 (тип 22, высотой 500мм, длиной 1400мм) указана паспортная теплоотдача 2702 Вт. Можно ли этот показатель использовать для подбора радиатора для обогрева помещения, у которого теплопотери 2700 Вт? По паспортным показателям – вроде бы подходит, бери и ставь. Так часто поступают продавцы техники для отопления, подбирающие покупателю радиаторы отопления по средним теплопотерям, бытовое значение которых принимается 100 Вт/м.кв. Т.е., для комнаты площадью 27 м.кв., покупателю порекомендуют радиатор отопления мощностью 2700 Вт, например, тот же рассмотренный Kermi FTV 22/500/1400. Насколько корректен такой подход с точки зрения современных методик расчета отопления? Ответу на этот вопрос и посвящена данная статья.
Прежде всего, нужно знать, что теплоотдача прибора отопления (кроме конструкции и габаритов) зависит от 3-х температур – подачи, обратки (для современных двухтрубных систем отопления) и температуре воздуха в помещении. Для расчета теплоотдачи радиатора отопления существуют специальные формулы, которые использовать в «прямом» виде уже нет необходимости, поскольку они уже учтены в современных автоматизированных программах тепловых расчетов. Поэтому, для упрощения рассмотрения, будем использовать данные одной из таких программ — Oventrop OZC, которой пользуются наши специалисты при выполнении проектов отопления для частных домов.

Читайте также  Как провести отопление в двухэтажном доме

Паспортная теплоотдача большинства радиаторов и конвекторов отопления указывается для следующих параметров системы отопления:
— температура теплоносителя подающей линии (подача) +90 град.С;
— температура теплоносителя обратной линии (обратка) +70 град.С;
— температура в помещении +20 град.С.
Кратко эти параметры обозначаются 90/70/20. Т.е., для рассматриваемого радиатора Kermi FTV 22/500/1400, теплоотдача 2702 Вт указана для параметров 90/70/20 (не путать с 90/60/90 :).

Если в системе отопления, в которой будет работать этот радиатор, параметры такие, как указано, то его можно использовать в «чистом» виде, без термовентиля (об этом – ниже).

Для частных домов такие параметры теплоносителя не могут быть установлены, поскольку современные теплогенераторы (котлы отопления) – все низкотемпературные, с температурой подачи максимум +80 град.С (обратка +60 град.С). Расчетная температура в помещении обычно принимается более комфортная для человека — от +22 град.С до +24 град.С (по опыту запросов наших клиентов).

Т.е., теплоотдача радиатора отопления для комнаты в частном доме должна быть определена на параметры 80/60/22. Кроме того, на радиаторы обычно устанавливаются терморегуляторы (термоголовки) для поддержания постоянной температуры в помещении. Терморегуляторы ставятся на термовентиль, который может быть установлен отдельно или встроен в радиатор (обычно встраиваются в радиаторы с нижним подключением). Все эти условия, очевидно, повлияют на характеристики теплоотдачи радиатора, рассмотрим характеристики этого влияния на примере теплотехнического расчета в программе Oventrop OZC.
Параметры теплоносителя устанавливаются в общих данных рассчитываемой системы отопления:

Расчет отопления программой Oventrop OZC 5.0, данные системы отопления

На этой же вкладке программы устанавливается величина увеличения мощности отопительного прибора с терморегулирующим вентилем (в процентах), по умолчанию – это 15%. Т.е., при использовании комнатного регулятора отопления, мощность прибора отопления должна подбираться на 15% выше полученного номинального значения (далее программа делает это автоматически).
Расчетная температура воздуха в помещении указывается в соответствующей вкладке для каждого помещения отдельно:

Расчет отопления программой Oventrop OZC 5.0, ввод температуры в помещении

После расчета теплопотерь для помещения (по введенным параметрам ограждающих конструкций – стен/полов/кровли/окон/дверей) программой подбираются приборы отопления (с заданными ограничениями по габаритам, чтобы помещались в габариты окон или других мест установки):

Расчет отопления программой Oventrop OZC 5.0, подбор радиатора отопления

Как видно из примера, для помещения с теплопотерями 1650 Вт, подобран прибор отопления – стальной панельный радиатор Kermi FTV 22/500/1400, расчетная теплоотдача (по простому – мощность) которого указана 1662 Вт.
Таким образом, от паспортной теплоотдачи радиатора 2702 Вт осталось всего 1662 Вт – для помещения условно стандартного частного дома с параметрами теплоносителя 80/60, расчетной температуре в помещении +22 град.С и с «термоголовкой» на радиаторе. Разница между паспортной и реальной теплоотдачей составила 38%, что весьма существенная величина.
Приведенная расчетная теплоотдача радиатора получена при размещении его на наружной стене, под окном, открыто (без экрана, которым иногда декорируют радиаторы). При проведении расчетов, программа также позволяет учесть степень конвекции при размещении радиатора за экраном, под глубоким подоконником, как показано на вкладке.

Расчет отопления программой Oventrop OZC 5.0, выбор размещения радиатора

При размещении радиатора в нише, уже понадобится Kermi FTV 22/500/1800 с той же теплоотдачей, а по паспорту у этого радиатора — 3474 Вт. Разница – больше половины – 52%.

Расчет отопления программой Oventrop OZC 5.0, выбор радиатора за экраном

Методика расчета учитывает размещение радиатора в других местах – на внутренней стене или под перекрытием. Так, при размещении на внутренней стене, понадобится радиатор Kermi FTV 22/500/1600 (при размещении его открыто), теплоотдача которого по паспорту 3088 Вт, т.е., больше расчетной на 44%.

Расчет отопления программой Oventrop, выбор радиатора на внутренней стене

Выводы по проведенным расчетам теплоотдачи радиаторов отопления.

1. Паспортной теплоотдачей для целей подбора радиатора отопления можно пользоваться для многоквартирного жилья, с параметрами теплоносителя 90/70 и планируемой температуре в помещении +20 град.С, а если планируется установка комнатного регулятора, то мощность радиатора должна подбираться на 15% выше требуемой.
2. Для частного дома паспортные параметры радиаторов отопления неприменимы в принципе, поскольку параметры теплоносителя 90/70 недостижимы. Наилучшим способом подбора радиаторов для помещений частного дома является выполнение проектных расчетов (т.е., выполнение проекта отопления). Если подбирать «на глаз», то нужно выбирать радиаторы с теплоотдачей, выше требуемой, минимум, на треть. Т.е., если для помещения нужен радиатор 2500 Вт, то подбирать нужно с паспортной теплоотдачей от 3325 Вт.
3. При размещении радиатора отопления открыто на стене, реальная теплоотдача радиатора для стандартного частного дома – на 38% ниже паспортной, при размещении на внутренней стене – на 44% ниже паспортной, если закрыть радиатор «экраном» — его теплоотдача будет вдвое ниже паспортной.

Расчет радиаторов отопления и необходимой тепловой мощности

Как выполнить расчет радиаторов отопления в квартире? Какое количество секций будет минимально необходимым при известной площади помещения?

О простых и относительно сложных способах расчета — эта статья.

расчет радиаторов отопления

Отложим в сторону газовый ключ и болгарку. Сегодня наш инструмент — калькулятор.

Дисклеймер

Эта статья ориентирована не на инженеров-теплотехников, а на владельцев квартиры или частного дома, которые собираются своими руками смонтировать систему отопления. Раз так — инструкция по расчету должна быть простой и понятной.

Мы не станем использовать сложные формулы и такие понятия, как «тепловой поток» и «термическое сопротивление стен», постаравшись предельно упростить подсчеты.

Общие положения

Любой простой способ расчета имеет довольно большую погрешность. Однако с практической стороны для нас важно обеспечить гарантированно достаточную тепловую мощность. Если она окажется больше необходимой даже в пик зимней стужи — что с того?

В квартире, где отопление оплачивается по площади, жар костей не ломит; да и регулировочные дроссели и термостатические регуляторы температуры не являются чем-то очень редким и недоступным.

В случае частного дома и собственного котла цена киловатта тепла нам хорошо известна, и, казалось бы, избыточное отопление ударит по карману. Однако на практике это не так. Все современные газовые и электрокотлы для отопления частного дома снабжаются термостатами, которые регулируют теплоотдачу в зависимости от температуры в помещении.

расчет радиаторов отопления в квартире

Термостат не даст котлу потратить лишнее тепло.

Даже если наш расчет мощности радиаторов отопления даст значительную ошибку в большую сторону — мы рискуем лишь стоимостью нескольких дополнительных секций.

Между прочим: помимо среднестатистических зимних температур, раз в несколько лет случаются экстремальные заморозки.
Есть подозрение, что в связи с глобальными климатическими изменениями они будут случаться все чаще, так что, выполняя расчет отопительных радиаторов, не бойтесь ошибиться в большую сторону.

Как рассчитать тепловую мощность отопительного прибора

Способ рассчитать мощность во многом зависит от того, о каком отопительном приборе идет речь.

  • Для всех без исключения электрических отопительных приборов эффективная тепловая мощность в точности равна их паспортной электрической мощности.
    Вспомните школьный курс физики: если не совершается полезная работа (то есть перемещение какого-либо объекта с ненулевой массой против вектора гравитации), вся потраченная энергия идет на нагрев окружающей среды.

расчет количества радиаторов отопления

Угадаете тепловую мощность прибора по его упаковке?

  • У большинства отопительных приборов от приличных производителей их тепловая мощность указывается в сопроводительной документации или на сайте изготовителя.
    Часто там можно обнаружить даже калькулятор расчета радиаторов отопления для определенного объема помещения и параметров отопительной системы.

Здесь есть одна тонкость: почти всегда производителем выполняется расчет теплоотдачи радиатора — батарей отопления, конвектора или фанкойла — для вполне конкретной разницы температур между теплоносителем и помещением, равной 70С. Для российских реалий такие параметры зачастую являются недостижимым идеалом.

Наконец, возможен простой, хоть и приблизительный, расчет мощности радиатора отопления по количеству секций.

Биметаллические радиаторы

Расчет биметаллических радиаторов отопления отталкивается от габаритных размеров секции.

Возьмем данные с сайта завода Большевик:

  • Для секции с межосевым расстоянием подводок 500 миллиметров теплоотдача равна 165 ватт.
  • Для 400-миллиметровой секции — 143 ватта.
  • 300 мм — 120 ватт.
  • 250 мм — 102 ватта.

расчет мощности радиаторов отопления

10 секций с полуметром между осями подводок дадут нам 1650 ватт тепла.

Алюминиевые радиаторы

Расчет алюминиевых радиаторов отопления выполняется исходя из следующих значений (данные для итальянских радиаторов Calidor и Solar):

  • Секция с межосевым расстоянием 500 миллиметров отдает 178-182 ватта тепла.
  • При межосевом расстоянии 350 миллиметров теплоотдача секции уменьшается до 145-150 ватт.

Стальные пластинчатые радиаторы

А как выполнить расчет стальных радиаторов отопления пластинчатого типа? У них ведь нет секций, от количества которых может отталкиваться формула расчета.

Здесь ключевые параметры — опять-таки межосевое расстояние и длина радиатора. Кроме того, производители рекомендуют учитывать способ подключения радиатора: при разных способах врезки в отопительную систему нагрев и, следовательно, тепловая мощность тоже может различаться.

Читайте также  Как сделать автономное отопление в многоквартирном доме

Чтобы не утомлять читателя обилием формул в тексте — просто отошлем его к таблице мощности модельного ряда радиаторов Korad.

расчет биметаллических радиаторов отопления

Схема учитывает габариты радиаторов и тип подключения.

Чугунные радиаторы

И только здесь все предельно просто: все производящиеся в России чугунные радиаторы имеют одинаковое межосевое расстояние подводок, равное 500 миллиметрам, и теплоотдачу при стандартной дельте температур в 70С, равную 180 ваттам на секцию.

Полдела сделано. Теперь мы знаем, как рассчитать количество секций или отопительных приборов при известной необходимой тепловой мощности. Но откуда взять саму тепловую мощность, которая нам нужна?

Расчет тепловой мощности

Мы рассмотрим несколько способов расчета, учитывающих разное количество переменных.

По площади

Расчет по площади основан на санитарных нормах и правилах, в которых русским по белому сказано: один киловатт тепловой мощности должен приходиться на 10 м2 площади помещения (100 ватт на м2).

Уточнение: при расчете применяется коэффициент, зависящий от региона страны. Для южных районов он равен 0,7 — 0,9, для Дальнего Востока — 1,6, для Якутии и Чукотки — 2,0.

расчет по площади

Чем ниже температура на улице, тем больше потери тепла.

Понятно, что метод дает весьма значительную погрешность:

  • Панорамное остекление в одну нитку явно даст большие теплопотери по сравнению со сплошной стеной.
  • Расположение квартиры внутри дома не учитывается, хотя понятно, что если рядом теплые стены соседних квартир — при одинаковом количестве радиаторов будет куда теплее, чем в угловой комнате, имеющей общую стену с улицей.
  • Наконец, главное: расчет верен для стандартной высоты потолков в доме советской постройки, равной 2,5 — 2,7 метра. Однако еще в начале 20-го века строились дома с высотой потолков в 4 — 4,5 метра, да и сталинки с трехметровыми потолками тоже потребуют уточненного расчета.

Давайте все-таки применим метод для расчета количества чугунных секций радиаторов отопления в комнате размером 3х4 метра, находящейся в Краснодарском крае.

Площадь равна 3х4=12 м2.

Необходимая тепловая мощность отопления — 12м2 х100Вт х0,7 районного коэффициента = 840 ватт.

При мощности одной секции в 180 ватт нам потребуется 840/180=4,66 секции. Число мы, понятно, округлим в большую сторону — до пяти.

Совет: в условиях Краснодарского края дельта температур между комнатой и батареей в 70С нереальна. Лучше устанавливать радиаторы как минимум с 30-процентным запасом.

расчет алюминиевых радиаторов отопления

Запас по тепловой мощности никогда не помешает. При необходимости можно просто прикрыть вентиля перед радиатором.

Простой расчет по объему

расчет стальных радиаторов отопления

Расчет по общему объему воздуха в помещении явно будет более точным уже потому, что учитывает разброс высоты потолков. Он тоже весьма прост: на 1 м3 объема необходимо 40 ватт мощности отопительной системы.

Давайте посчитаем необходимую мощность для нашей комнатки под Краснодаром с небольшим уточнением: она находится в сталинке 1960 года постройки с высотой потолка 3,1 метра.

Объем помещения равен 3х4х3,1=37,2 кубометра.

Соответственно радиаторы должны иметь мощность 37,2х40=1488 ватта. Учтем районный коэффициент 0,7: 1488х0,7=1041 ватт, или шесть секций чугунного лютого ужаса под окном. Почему ужаса? Внешний вид и постоянные течи между секциями через несколько лет эксплуатации восторга не вызывают.

Если же вспомнить, что цена чугунной секции выше, чем у алюминиевого или биметаллического импортного радиатора отопления — идея покупки такого отопительного прибора и впрямь начинает вызывать легкую панику.

Уточненный расчет по объему

Более точный расчет систем отопления выполняется с учетом большего числа переменных:

  • Количества дверей и окон. Усредненные потери тепла через окно стандартного размера — 100 ватт, через дверь — 200.
  • Расположение комнаты в торце или углу дома заставит нас использовать коэффициент 1,1 — 1,3 в зависимости от материала и толщины стен здания.
  • У частных домов используется коэффициент 1,5, поскольку куда выше потери тепла через пол и крышу. Сверху и снизу ведь не теплые квартиры, а улица…

Базовое значение — те же 40 ватт на кубометр и те же региональные коэффициенты, что и при расчете по площади комнаты.

Давайте выполним расчет тепловой мощности радиаторов отопления для комнаты с теми же габаритами, что и в предыдущем примере, но мысленно перенесем ее в угол частного дома в Оймяконе (средняя температура января -54С, минимум за время наблюдений — 82). Ситуация усугубляется дверью на улицу и окошком, из которого видны жизнерадостные оленеводы.

Базовую мощность с учетом только объема помещения мы уже выполнили: 1488 ватт.

Окно и дверь прибавят 300 ватт. 1488+300=1788.

Частный дом. Холодный пол и утечка тепла через крышу. 1788х1,5=2682.

Угол дома заставит нас применить коэффициент 1,3. 2682х1,3=3486,6 ватта.

расчет тепловой мощности радиаторов отопления

К слову, в угловых комнатах отопительные приборы стоит монтировать на обе внешние стены.

Наконец, теплый и ласковый климат Оймяконского улуса Якутии приводит нас к мысли о том, что полученный результат можно умножить на региональный коэффициент 2,0. 6973,2 ватта требуется для обогрева маленькой комнатушки!

Расчет количества радиаторов отопления нам уже знаком. Общее количество чугунных или алюминиевых секций составит 6973,2/180=39 секций с округлением. При длине секции 93 миллиметра баян под окном будет иметь длину 3,6 метра, то есть едва поместится вдоль более длинной из стенок…

расчет теплоотдачи радиатора батарей отопления

«- Десять секций? Хорошее начало!» — такой фразой житель Якутии прокомментирует это фото.

Заключение

Дополнительную информацию о расчете отопительных систем вы найдете в видео в конце статьи. Автор же напоследок хочет сделать официальное заявление: в Оймякон по своей воле — ни ногой. Теплых зим!

Как рассчитать теплоотдачу радиаторов отопления — порядок, примеры и дополнительные факторы

teplootdacha-radiatorov-otopleniyaЗадача любой системы отопления является эффективная передача энергии от теплоносителя (горячей воды) в помещение. Обогрев одними трубами неэффективен, так как они имеют малую площадь нагреваемой поверхности. Для этого используют специальные элементы системы отопления – радиаторы.

Радиаторы предназначены для повышения теплопередачи накопившейся в системе тепловой энергии в помещение. Они представляют собой секционную или монолитную конструкцию, внутри которой циркулирует теплоноситель. Радиаторы подключаются последовательно или параллельно в системе отопления.

Основные характеристики радиатора отопления:

  • Материал изготовления.
  • Тип конструкции.
  • Габаритные размеры (кол-во секций).
  • Теплоотдача.

Последнее является существенным показателем, так как определяет фактическое количество энергии, передаваемое от поверхности радиатора в комнату.

Что такое теплоотдача и чем она определяется

Теплоотдача — это процесс передачи тепловой энергии от нагретого тела (радиатора) во внешнее пространство (помещение). Данный показатель измеряется в Вт. От чего же зависит теплоотдача?

[box type=»success» ]Основная задача радиаторов отопления – передача тепловой энергии от системы отопления в квартиру. Эффективность определяется теплопроводностью материала, т.е. тепловыми потерями.[/box]

Теплопроводность – это показатель, определяющий тепловые потери энергии, проходящей через материал определенного объема за 1 мин. Измеряется в Вт/(м*К).

В таблице 1 показаны коэффициенты теплопроводности для основных материалов изготовления радиаторов.

Материал Теплопроводность, Вт/(м*К)
Сталь 58
Алюминий 230
Чугун 50
Медь 380

Чем выше этот показатель, тем меньше тепловых потерь будет при передаче энергии от теплоносителя в помещение. Как видно, лучший материал для изготовления радиаторов – это медь. Но из-за высокой стоимости и технологической сложности изготовления они менее всего популярны. Чаще используют стальные или алюминиевые модели. Нередко применение в конструкции сочетание вышеописанных элементов.

Каждый из производителей указывает мощность теплоотдачи для своих изделий. Она напрямую зависит от температуры воды в системе отопления на начальном (выход из котла) и конечном (ввод обратки в котел) отрезке и температуры в помещении. Определяется по формуле:

Практически все производители указывают величину перепада температуры в системе 90/70. Именно для этой величины определена теплоотдача в паспорте радиатора. Но если система высокоэффективная и теплоноситель не имеет большую тепловую разницу на входе и выходе?

Самостоятельный расчет теплоотдачи

Для проведения расчета теплоотдачи(Q) необходимо знать следующие параметры:

  1. ΔT – температурный напор системы.
  2. Коэффициент теплопроводности радиатора (k).
  3. Площадь секций (S).

Расчет мощности проводится по формуле:

Возьмем в качестве примера систему с эффективным нагревом теплоносителя и для комнатной температуры 22°С:

Далее, рассчитываем мощность теплоотдачи радиатора по показателям:

  • Материал изготовления – сталь (k=52 Вт/(м*К).
  • Площадь – 1,125*0,57= 0,64 м².

При этом необходимо учитывать и потери тепла в помещении, способ подключения радиаторов и место их установки.

Дополнительные факторы, влияющие на теплоотдачу

Помимо физических свойств радиаторов существуют и внешние показатели, которые могут существенным образом влиять на его КПД.

Первое, на что необходимо обратить внимание- это способы подключения радиаторов. На рисунке 1 показаны варианты подсоединения труб отопления и % потери энергии при этом.

Способы подключения радиаторов

Как видно из рисунка, оптимальным является 1-й способ подключения, когда подводящий патрубок находится в верхней части радиатора, а выводящий -в нижней, на другой стороне системы. Но не всегда такой способ возможно сделать по факту, так как многое зависит от разводки отопительного трубопровода.

Читайте также  Как рассчитать гидрострелку системы отопления

Так же существенное влияние оказывает и место установки радиатора относительно оконной конструкции. На рис. 2 показаны, как изменится теплоотдача в зависимости от монтажа.

Изменение теплоотдачи радиаторов (k)

При максимальной изоляции радиаторов происходит сохранение их теплоотдачи, так как энергия в результате отражения от дополнительных поверхностей частично возвращается на поверхность радиатора. Но при этом понижается эффективность нагрева помещения. При планировании монтажа следует соблюсти «золотую середину». Для средних комнат (15-20 м²) предпочтителен открытый монтаж, с таким расчетом, чтобы подоконник закрывал радиатор на 2/3.

Выбор мощности радиатора зависит от характеристик помещения и отопительной системы. Применяя комплексный анализ и систему расчета можно подобрать оптимальный размер и мощность отопительного прибора. И тогда, даже при низких температурах на улице, в доме сохранится тепло и уют.

Расчет тепловой мощности радиаторов

Как уже неоднократно упоминалось, что тепло, передаваемое радиаторами воздуху помещения, должно компенсировать теплопотери помещения и в упрощенном виде это соответствует тому, что на каждые 10 м² площади помещения нужно устанавливать радиаторы тепловой мощностью не менее 1 кВт. На практике, этот показатель увеличивают еще на 15%, т. е. полученную мощность радиаторов умножают на коэффициент 1,15. Существуют более точные расчеты необходимой мощности радиаторов, которыми руководствуются специалисты, но для грубой оценки и предложенного метода достаточно. При этом методе расчета радиаторы могут оказаться чуть большей мощности, чем необходимо, но зато возрастет качество отопительной системы, при котором возможна более точная настройка и низкотемпературный режим отопления.

При покупке радиаторов в магазинах в паспортах технических характеристик тепловая мощность может быть указана в киловаттах или по расходу теплоносителя. Если указан расход теплоносителя, то мы уже знаем, что расход теплоносителя равный 1 л/мин примерно соответствует мощности в 1 кВт.

Обычно в паспорте отопительного прибора указаны размеры радиатора в миллиметрах. В настоящее время в продаже радиаторы бывают высотой 60, 50, 40, 30 и 20 см, приборы высотой 20 см и менее называют плинтусными. Высота 60 см — традиционная высота старых чугунных радиаторов, и новые радиаторы высотой 60 см хороши для их простой замены. Сейчас чаще используют радиаторы высотой 50 см, так как в архитектуре все чаще используются высокие окна и низкие подоконники, а при установке радиатора под окно нужно выдержать нормативный зазор между подоконной доской и радиатором не менее 5 см, а расстояние между полом и радиатором должно быть не менее 6 см. Низкие радиаторы выглядят компактнее, но при одинаковой мощности будут длиннее, а размеры помещения не всегда позволяют установить более длинные радиаторы.

В паспорте радиатора рядом с мощностью, например, 1905 Вт, указываются цифры расчетного перепада температуры, например, 70/55. Это означает, что при охлаждении с 70 до 55 градусов радиатор со своей поверхности отдает 1905 Вт тепловой мощности. Однако многие продавцы указывают мощность своих радиаторов только для перепада 90/70. При использовании таких радиаторов для среднетемпературных систем отопления с перепадом 70/55 мощность теплоотдачи такого радиатора будет меньше заявленного в паспорте. Поэтому при выборе радиаторов для средне- и низкотемпературных (55/45) систем отопления их фактическую мощность нужно пересчитывать.

Мощность отопительного прибора определяется по формуле:

Q = k×A×ΔT , где
k — коэффициент теплопередачи отопительного прибора, Вт/м² °С;
А — площадь теплопередающей поверхности отопительного прибора, м²;
ΔT — температурный напор, °С (рис. 82).

Из паспортных данных на радиатор нам известна мощность радиатора (Q) и температурный напор (ΔT), соответствующий данной мощности. Подставляя эти значения в формулу, определяем произведение k×A. Теперь известны все составляющие формулы, подставляя значение ΔT равное 50 или 30°С, соответствующее средне- и низкотемпературным системам отопления, находим мощность данного радиатора для этих систем. Более того, мощность радиаторов можно пересчитать на свой температурный напор (ΔT), если вас по каким-либо причинам не устраивают нормативные величины 50 и 30°С, используя для этого формулу на рисунке 82.

Например, нам нужно выбрать радиаторы для комнаты площадью 16 м². Для отопления такой площади нужны радиаторы мощностью 1,6 кВт, умножаем это число на коэффициент 1,15 и получаем 1,84 кВт. Приходим в магазин и выбираем радиатор подходящий нам по размеру и мощности, предположим, что мы находим такой отопительный прибор, в паспортных данных которого обозначена мощность 1905 Вт (1,9 кВт). Изучая паспортные данные, находим, что указанную мощность этот радиатор может выдать только при температурном напоре 60°С (90/70). Следовательно, при проектировании низкотемпературной системы отопления (ΔT=30°С) с качественной регулировкой температуры теплоносителя, например, с применением трехходовых смесителей в режиме (55/45), мощность предлагаемого радиатора нужно пересчитать. По формуле или паспортным данным находим величину произведения k×A = 31,75 Вт/°С и вставляем обновленные данные в формулу определения мощности. Q = k×A×ΔT = 31,75×30 = 956 Вт, что составляет примерно 50% от нужной нам мощности. Дальше можно поступить несколькими способами: купить вместо одного два радиатора; рассчитать мощность одной секции радиатора и на основании этого расчета подобрать радиатор с нужным количеством секций; поискать другие радиаторы, удовлетворяющие нашим требованиям. Необходимо добавить, что при покупке радиаторов для низкотемпературных отопительных систем (ΔT = 30°С), в паспортных данных которых указан температурный напор 60°С, результат всегда будет один — количество секций радиаторов должно быть удвоено. В других случаях, когда в паспорте указаны другие температурные напоры или к расчетному температурному напору у вас свои требования, мощность радиаторов нужно пересчитать.

На отдачу тепла от радиаторов в помещение влияют также место размещения радиатора в комнате и способ его подключения к трубопроводам.

Радиаторы размещают прежде всего под световыми проемами. Какие бы сверхсовременные стеклопакеты не стояли в оконных рамах, окно — это всегда место наибольших теплопотерь. Размещенный под окном радиатор нагревает воздух вокруг себя. Поднимаясь вверх, горячий воздух создает перед окном тепловую завесу, препятствующую распространению холода от окна. Кроме того, холодный воздух от окна тут же перемешивается с теплым воздухом, поднимающимся от радиатора, и усиливает конвекцию во всем помещении, способствуя более быстрому прогреванию всего воздуха помещения. Желательно, чтобы радиаторная «гармошка» была длиной во всю ширину окна, в крайнем случае, не менее 50% длины проемов. Вертикальные оси оконного проема и радиатора совмещают, допустимое отклонение не более 50 мм. В угловых комнатах могут быть размещены дополнительные радиаторы вдоль глухих наружных стен по возможности ближе к наружному углу. При применении стояковых систем отопления стояки нужно размещать в углах помещения, особенно важно разместить стояки в наружных углах угловых комнат. Дело здесь в том, что наружные углы домов подвергаются атаке холодного воздуха, в отличие от стен, с двух сторон. Разместив отопительные стояки в углах, вы обеспечиваете их прогрев с внутренней стороны и резко снижаете вероятность отсыревания и почернения материала стен — развития в углах грибковых порослей.

Отопительные приборы размещают так, чтобы были обеспечены их осмотр, очистка и ремонт. Если применяется ограждение (экран) или декорирование приборов, то в расчет тепловой мощности радиаторов нужно внести коррективы. Мощность приобретаемых радиаторов должна быть рассчитана с поправочным коэффициентом (рис. 83).

Изменение мощности теплоотдачи радиаторов в зависимости от способа их установки

рис.83. Изменение мощности теплоотдачи радиаторов в зависимости от способа их установки

Присоединение труб к радиаторам может быть с одной стороны (одностороннее) и с противоположных сторон (разностороннее). При присоединении труб с разных сторон возрастает теплопередача приборов, однако конструктивно рациональнее делать одностороннее присоединение труб. С разных сторон присоединяют радиаторы при числе секций более 20, а также при числе приборов «на сцепке» более одного.

Тепловой поток радиаторов зависит от расположения мест подачи и отвода из них теплоносителя. Теплопередача возрастает при подаче теплоносителя в верхнюю часть и отводе его из нижней части прибора (направление движения сверху вниз) и понижается при направлении движения снизу вверх (рис. 84). При установке отопительных приборов в несколько ярусов по высоте (по этажам) рекомендуется обеспечивать последовательное движение теплоносителя сверху вниз.

Изменение мощности теплоотдачи радиаторов в зависимости от способа присоединения к ним труб

рис.84. Изменение мощности теплоотдачи радиаторов в зависимости от способа присоединения к ним труб

Индивидуальное регулирование теплопередачи отопительных приборов может быть ручным и автоматическим. Термостатные вентили регулируют пропуск теплоносителя таким образом, что достигают наилучших показателей теплообмена на всех участках теплового прибора.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: