Как рассчитать теплообменник для отопления

Тепловой расчет теплообменных аппаратов

Тепловой расчет теплообменных аппаратов

Теплообменный аппарат – это устройство, обеспечивающее передачу тепла между средами, разнящимися по температуре. Для обеспечения тепловых потоков различного количества конструируются разные теплообменные устройства. Они могут иметь разные формы и размеры в зависимости от требуемой производительности, но основным критерием выбора агрегата является площадь его рабочей поверхности. Она определяется с помощью теплового расчета теплообменника при его создании или эксплуатации.

Расчет может нести в себе проектный (конструкторский) или проверочный характер.

Конечным результатом конструкторского расчета является определение площади поверхности теплообмена, необходимой для обеспечения заданных тепловых потоков.

Проверочный расчет, напротив, служит для установления конечных температур рабочих теплоносителей, то есть тепловых потоков при имеющейся площади поверхности теплообмена.

Соответственно, при создании устройства проводится конструкторский расчет, а при эксплуатации – проверочный. Оба расчета идентичны и, по сути, являются взаимообратными.

Основы теплового расчета теплообменных аппаратов

Основой для расчета теплообменников являются уравнения теплопередачи и теплового баланса.

Уравнение теплопередачи имеет следующий вид:

  • Q – размер теплового потока, Вт;
  • F – площадь рабочей поверхности, м2;
  • k – коэффициент передачи тепла;
  • Δt – разница между температурами носителей на выходе в аппарат и на выходе из него. Также величина называется температурным напором.

Как можно заметить, величина F, являющаяся целью расчета, определяется именно через уравнение теплопередачи. Выведем формулу определения F:

Уравнение теплового баланса учитывает конструкцию самого аппарата. Рассматривая его можно определить значения t1 и t2 для дальнейшего вычисления F. Уравнение выглядит следующим образом:

  • G1 и G2 – расходы масс греющего и нагреваемого носителей соответственно, кг/ч;
  • cp1 и cp2 – удельные теплоемкости (принимаются по нормативным данным), кДж/кг‧ ºС.

В процессе обмена тепловой энергией носители изменяют свои температуры, то есть в устройство каждый из них входит с одной температурой, а выходит – с другой. Эти величины (t1 вх ;t1 вых и t2 вх ;t2 вых ) являются результатом проверочного расчета, с которым сравниваются фактические температурные показатели теплоносителей.

Вместе с тем большое значение имеют коэффициенты теплоотдачи несущих сред, а также особенности конструкции агрегата. При детальных конструкторских расчетах составляются схемы теплообменных аппаратов, отдельным элементом которых являются схемы движения теплоносителей. Сложность расчета зависит от изменения коэффициентов теплопередачи k на рабочей поверхности.

Для учета этих изменений уравнение теплопередачи принимает дифференциальный вид:

Такие данные, как коэффициенты теплоотдачи носителей, а также типовые размеры элементов при конструировании аппарата или при проверочном расчете, учитываются в соответствующих нормативных документах (ГОСТ 27590).

Пример расчета

Для большей наглядности представим пример конструкторского расчета теплообмена. Этот расчет имеет упрощенный вид, и не учитывает потерь теплоты и особенностей конструкции теплообменного аппарата.

  • Температура греющего носителя при входе t1 вх = 14 ºС;
  • Температура греющего носителя при выходе t1 вых = 9 ºС;
  • Температура нагреваемого носителя при входе t2 вх = 8 ºС;
  • Температура нагреваемого носителя при выходе t2 вых = 12 ºС;
  • Расход массы греющего носителя G1 = 14000 кг/ч;
  • Расход массы нагреваемого носителя G2 = 17500 кг/ч;
  • Нормативное значение удельной теплоемкости ср =4,2 кДж/кг‧ ºС;
  • Коэффициент теплопередачи k = 6,3 кВт/м 2 .

1) Определим мощность теплообменного аппарата с помощью уравнения теплового баланса:

Q вх = 14000‧4,2‧(14 – 9) = 294000 кДж/ч

Q вых = 17500‧4,2‧(12 – 8) = 294000 кДж/ч

Qвх = Qвых. Условия теплового баланса выполняются. Переведем полученную величину в единицу измерения Вт. При условии, что 1 Вт = 3,6 кДж/ч, Q = Qвх = Qвых = 294000/3,6 = 81666,7 Вт = 81,7 кВт.

2) Определим значение напора t. Он определяется по формуле:

3) Определим площадь поверхности теплообмена с помощью уравнения теплопередачи:

F = 81,7/6,3‧1,4 = 9,26 м2.

Как правило, при проведении расчета не все идет гладко, ведь необходимо учитывать всевозможные внешние и внутренние факторы, влияющие на процесс обмена теплом:

  • особенности конструкции и работы аппарата;
  • потери энергии при работе устройства;
  • коэффициенты теплоотдачи тепловых носителей;
  • различия в работе на разных участках поверхности (дифференциальный характер) и т.д.

Вы можете самостоятельно провести тепловой расчет на основе уравнений выше и получить результат в pdf-формате (в полях «Допустимые потери», «Давление расч.» и «Tmax» можно указать произвольные данные, единственное ограничение: Tmax > t1).

ВАЖНО: Для наиболее точного и достоверного расчета инженер должен понимать сущность процесса передачи тепла от одного тела к другому. Также он должен быть максимально обеспечен необходимой нормативной и научной литературой, поскольку в расчете на множество величин составлены соответствующие нормы, которых специалист обязан придерживаться.

Выводы

Что мы получаем в результате расчета и в чем его конкретное применение?

Допустим, что на предприятие поступил заказ. Необходимо изготовить тепловой аппарат с заданной поверхностью теплообмена и производительностью. То есть перед предприятием не стоит вопрос размеров аппарата, но стоит вопрос материалов, которые обеспечат нужную производительность с заданной рабочей площадью.

Для решения данного вопроса производится тепловой расчет, то есть определяются температуры теплоносителей на входе и выходе из аппарата. Исходя из этих данных выбираются материалы для изготовления элементов устройства.

В конечном итоге, можно сказать, что рабочая площадь и температура носителей на входе и выходе из аппарата – основные взаимосвязанные показатели качества работы теплообменника. Определив их путем теплового расчета инженер сможет разработать основные решения для конструирования, ремонта, контроля и поддержания работы теплообменников.

В следующей статье мы рассмотрим назначение и особенности механического расчета теплообменника, поэтому подписывайтесь на нашу e-mail рассылку и новости в соц сетях, чтобы не пропустить анонс.

ООО Энерготеп

Котельные Отопление Мини ТЭС Дымовые трубы Газопоршневые электростанции Трубопроводы Пластинчатые теплообменники Ульяновск Инженерные системы

Расчет и подбор теплообменника

РАСЧЕТ и ПОДБОР ТЕПЛООБМЕННИКА

ЗВОНИТЕ ПО ТЕЛ.(8422)44-75-75

ИЛИ ОТПРАВЛЯЙТЕ ОПРОСНЫЕ ЛИСТЫ НА ЭЛЕКТРОННУЮ ПОЧТУ

Уважаемые посетители сайта, если при заполнении опросных листов у Вас возникнут какие-либо затруднения

Вы можете заполнить только контактные данные.

ЧТО НУЖНО ДЛЯ БЕСПЛАТНОГО РАСЧЕТА ЦЕНЫ ТЕПЛООБМЕННИКА?

Чтобы расчитать тип и цену на пластинчатый теплообменник, Вам необходимо предоставить исходные данные для расчета:

  1. Тип среды (пример вода-вода, пар-вода, масло-вода)
  2. Тепловая нагрузка (Гкал/ч) или мощность (кВт)
  3. Массовый расход среды (т / ч) — если не известна тепловая нагрузка
  4. Температура среды на входе в теплообменник °С (по горячей и хол. стороне)
  5. Температура среды на выходе из теплообменника °С (по горячей и хол. стороне)

ГДЕ ВЗЯТЬ ИСХОДНЫЕ ДАННЫЕ?

Исходные данные для расчета вы можете взять:

  1. из технических условий (ТУ), которые выдает теплоснабжающая организация
  2. из договора с теплоснабжающей организацией
  3. из технического задания (ТЗ) от гл. инженера, технолога

ПОДРОБНЕЕ ОБ ИСХОДНЫХ ДАННЫХ:

1. Температура на входе и выходе обоих контуров.

К примеру, в устройствах для котла, входная температура не может превышать 55°С, а разница температур (LMTD) — 10°С. И, чем выше разница – тем компактней и дешевле оборудование.

2. Максимально допустимая рабочая температура, давление среды.

Определяются проектом и влияют на стоимость пластинчатого теплообменника (чем ниже эти параметры, тем меньше цена на оборудование).

3. Массовый расход (m) рабочей среды в обоих контурах (кг/с, кг/ч).

Другими словами – это пропускная способность агрегата. Зачастую известен только объемный расход воды (измеряется в м3/ч, л/мин), которым, к примеру, может быть параметр, указанный на уже купленном гидравлическом насосе. Чтобы вычислить массовый расход, потребуется умножить объемную пропускную способность на плотность рабочей среды (для холодной воды из центральной сети она равна 0.99913 и может изменяться, в зависимости от температуры).

Читайте также  Расчет количества теплоносителя для системы отопления

4. Тепловая мощность (Р, кВт).

Характеризует количество тепла, которое должно быть отдано теплообменником. Если все перечисленные выше параметры известны, то тепловая нагрузка легко определяется по формуле:

P = m * cp *δt, где m – расход среды, cp – удельная теплоемкость (для воды, нагретой до 20 градусов, равна 4,182 кДж/(кг *°C)), δt – температурная разность на входе и выходе одного контура (t1 — t2).

5. Дополнительные характеристики.

При заполнении опросного листа на расчет теплообменника желательно указать и ряд дополнительных характеристик:

  • вид и вязкость рабочей среды (будут влиять на выбор материала для пластин);
  • средний температурный напор LMTD (рассчитывается по формуле ΔT1 — ΔT2/( In ΔT1/ ΔT2), где ΔT1 = T1(температура на входе горячего контура) — T4(выход горячего контура) и ΔT2 = T2 (вход холодного контура)- T3 (выход холодного контура);
  • загрязненность среды (R) – редко учитывается при расчете пластинчатых теплообменников, влияет на площадь теплообмена и нужна лишь в особых случаях (для систем центрального теплоснабжения этот параметр не учитывается).

Любая из перечисленных характеристик может существенно повлиять на конструкцию и цену пластинчатого теплообменника. А цель теплотехнического расчета – подбор оптимальной площади теплопередачи будущего оборудования (и, соответственно, количества пластин).

СКОЛЬКО ВРЕМЕНИ ЗАЙМЕТ РАСЧЕТ?

Программный расчет стоимости теплообменника будет сделан на основании полученных исходных данных.

Коммерческое предложение с ценой и техническим расчетом будет отправлено Вам в течении 24 часов.

РАСЧЕТ ПЛАСТИНЧАТОГО ТЕПЛООБМЕННИКА: ТЕОРЕТИЧЕСКИЕ ОСНОВЫ

При расчете оборудования используются базовые знания о законах теплообмена, в частности удельная теплота химических и фазовых превращений, удельное теплосодержание (количество тепла, необходимое для нагрева одного килограмма вещества от ОС0 до заданной t0) и теплоемкость (количество тепла, необходимое для нагрева на 1С0 1-го килограмма вещества).

Все агрегаты характеризуются параметрами, необходимыми для качественного расчета, так в частности:

1. ЭФФЕКТИВНОСТЬ ПТО ВЫЧИСЛЯЕТСЯ СОГЛАСНО ФОРМУЛЕ:

Как правило, на практике данные значения не превышают показателей 80-85%.

2. РАСХОДЫ ЧЕРЕЗ ТЕПЛООБМЕННОЕ ОБОРУДОВАНИЕ

С обеих сторон агрегата имеются 2-а независимых друг от друга контура, что позволяет предположить, что расходы каждого из контуров могут быть разными. Для того чтобы вычислить расходы, необходимо определить количество тепловой энергии, требуемое для отопления 2-го контура. Возьмем,например, 10 кВт. Далее необходимо вычислить площадь пластин, необходимую для теплопередачи. Это делается по формуле:

ТЕПЛОВОЙ РАСЧЕТ ПЛАСТИНЧАТЫХ ТЕПЛООБМЕННИКОВ

Тепловой расчет ПТО производится в следующей последовательности:

1. соотношение количества ходов для нагреваемой Х2 и греющей Х1 для пластинчатого теплообменника высчитывается согласно формуле:

В случае, когда соотношение ходов не превышает показатель 2, то для эффективного теплообмена (повышение скорости среды) целесообразно применить симметричную комплектацию.

2. При расчете необходимая скорость жидкости в каналах должна соответствовать ГОСТу-15515. По оптимальной скорости определяется требуемое количество каналов по нагреваемой среде:

где fk – сечение 1-го межпластинчатого канала.

3. Комплектация водонагревателя симметрична, иными словами мгр. = мнагр. Определяется общее живое сечение каналов в пакете по ходу греющей/нагреваемой среды согласно формуле:

В таблице нужно выбрать необходимый типоразмер устройства:

4. Далее необходимо найти фактическую скорость нагреваемой и греющей воды в агрегате:

5. По формуле определите коэффициент теплоотдачи от греющей воды к стенке трубки:

— где A – это коэффициент, который зависит от типа пластин.6. Коэффициент тепловосприятия стенок пластины к нагреваемой жидкости рассчитывается по формуле:

7. Коэффициент теплопередачи рассчитывается исходя из формулы:

8. Оптимальная поверхность нагрева определяется по формуле:

9. Количество ходов вычисляется по формуле:

10. Реальная поверхность нагрева вычисляется по формуле:

11. Потеря давления вычисляется согласно формулам:

Очевидно, что при равных показателях температуры теплоносителя и значении теплового потока, можно подобрать пластинчатые теплообменники различного типоразмера с равным количеством пластин и существенно отличающимся расчетным коэффициентом теплопередачи (Ко). Параметры Ко зачастую зависят от величины допустимого перепада давления. Из этого следует, что теплообменник с расчетным коэффициентом теплопередачи 6500 Вт/(м2*°С) будет иметь в 1.85 раза большую поверхность, нежели агрегат срасчетным коэффициентом теплопередачи 3500 Вт/(м2*°С). При этом стоимость первого теплообменного устройства будет примерно в 1.5 раза ниже.

Как выбрать теплообменник

Теплообменник — устройство, в котором происходит процесс обмена энергией (теплом) между средами различной температуры. Конкретные параметры и характеристики оборудования зависят от его типа.

Все устройства делятся на две большие группы. В одних среды смешиваются друг с другом, в других они разделены стенкой. Вторые используют чаще и называют поверхностными. Среди них выделяют регенеративные и рекуперативные установки, в зависимости от направления потока теплоносителя.

По особенностям конструкции разделяют аппараты с плоской поверхностью (пластинчатые, спиральные) и трубчатые (кожухотрубные, змеевиковые, «труба в трубе»).

При выборе оборудования нужно обращать внимание на ряд параметров. Начнем по порядку.

block_cupcoffeeПолучить консультацию

Базовые характеристики

Независимо от типа устройства, надо учитывать основные параметры:

Площадь теплообмена. Это площадь одной поверхности изделия, умноженная на количество поверхностей. Плюс, на нее влияют другие факторы: потеря давления в ходе работы, дополнительные ресурсы площади на случай появления отложений, коэффициент теплопередачи и скорости в каналах.

Мощность теплообменника. Объем тепла, который выделяет аппарат.

Габариты и вес. От них будет зависеть, справится ли оборудование с поставленной задачей. Также они влияют на количество требуемых материалов для изготовления устройства.

Дальше необходимо определить технические условия использования оборудования.

Технические условия эксплуатации

При подборе теплообменника важно понимать, в каких условиях оно будет работать.

Тип среды. В качестве теплоносителей обычно используют пар, воду, нефть, газ. Структура прибора будет влиять на расчеты и дальнейший подбор, так как агрессивные вещества требуют повышенных свойств прочности устройства.

При использовании нестандартных сред, могут понадобиться значения теплоемкости, вязкости и теплопроводимости носителя тепла.

Расход рабочей среды. Нужно знать, какая масса рабочей среды проходит через теплообменную установку за определенный интервал времени. Для вычисления этого плотность среды умножают на ее объем.

Температуры сред на выходах и входах теплообменника. Чем больше эта разница, тем дешевле и меньше в размерах аппарат.

Допустимые потери по напору нагреваемой и охлаждаемой стороны. При прохождении через теплообменник теплоносителя и теплопотребителя происходит падение давления рабочей среды. Важно учитывать это при выборе, потому что слишком большое падение давления жидкости не позволит, например, поднимать ее на верхние этажи здания.

Максимальная рабочая температура. Чем выше температура внутри оборудования, тем жестче требования к устройству теплообменного аппарата и материалам его изготовления.

Максимальное рабочее давление. Аналогично предыдущему пункту, чем выше внутри теплообменника давление, тем серьезнее требования к его конструкционным особенностям и используемым при проектировании материалам.

Тепловая нагрузка. Способность теплообменного аппарата передать количество энергии от одной среды другой. Оборудование с высокими нормами тепловой нагрузки обычно имеет большие габариты и работает под большим давлением.

Исходя из технических условий эксплуатации, производят расчет теплообменника.

Варианты расчета

Есть восемь способов расчета оборудования, каждый нужен для своих целей и задач.

Тепловой расчет. Применяют при проектировании теплообменников известной мощности и при монтаже готовых установок в заданных условиях. Главная задача этого расчета — определить оптимальный тип прибора и форму теплообменной поверхности. Дополнительно он позволяет определить эффективность теплопередачи, площадь теплообменной поверхности, массовый расход теплоносителя и его температуру на выходе.

Читайте также  Нужен ли байпас в однотрубной системе отопления

Основа для расчета — уравнения теплопередачи и теплового баланса.

Уравнение теплопередачи имеет вид:

Q — размер теплового потока, Вт;

F — площадь рабочей поверхности, м²;

k — коэффициент передачи тепла;

Δt — разница между температурами носителей на выходе в аппарат и на выходе из него. Также величина называется температурным напором.

Величину F, которая является целью расчета, определяют именно через уравнение теплопередачи:

Компоновочный расчет. Позволяет определить оптимальное взаимное расположение каналов теплообменника для разных теплоносителей.

Вытекает из теплового расчета и использует его результаты.

Конкретную формулу расчета определяют тип теплообменного ап­парата и его конструктивные особенности.

Поверочный расчет. Осуществляется на основе теплового расчета и предназначен для проверки возможности установки справляться с поставленной задачей в конкретных условиях. Для его выполнения нужно знать тепловую производительность и параметры тепловой среды.

Гидравлический расчет. Позволяет вычислить необходимые для работы гидравлические параметры теплоносителя, например, скорость его движения.

С одной стороны, скорость ограничивает величина гидравлического сопротивления, с другой, ее увеличение требует повышения энергозатрат на перекачивание теплоносителя.

Конструктивный расчет. Выполняют на стадии проектирования теплообменного устройства для определения самого типа изделия. С его помощью рассчитывают требуемое число пластин пластинчатого теплообменника, количество труб и их длину, диаметр и высоту прибора в кожухотрубном устройстве.

Исходными данными служат результаты теплового и гидравлического расчетов.

Механический расчет. Определяет способность конструкции теплообменного аппарата выдерживать факторы внутренней и внешней механической нагрузки: изгиб, сжатие, растяжение и подобные.

Если кратко, расчет делают так:

  1. Выбирают материал для изготовления элементов конструкции.
  2. Проводят расчет толщины корпусной стенки c учетом напряжения, диаметра теплообменника и расчетного давления.
  3. Рассчитывают толщину днища, учитывая его форму.
  4. Производят расчет опор прибора с учетом типа опоры, количества опор и их исполнения.
  5. Рассчитывают максимальный вес аппарата.
  6. Проверяют прочность фундамента. Напряжение материала фундамента должно быть больше напряжения опорной поверхности.

Расчет температурных напряжений. Используют для определения изменения геометрической формы теплообменника и отдельных его элементов при тепловом воздействии и для выявления мест напряжения, возникающих из-за температурного расширения. Это позволяет правильно подбирать материалы, из которых изготавливают элементы оборудования.

Прочностный расчет. Объединяет три перечисленные выше вида — механический, гидравлический и расчет температурных напряжений. Проверяет, как установка выдерживает все виды нагрузки, возникающие под влиянием любых возможных факторов.

Расчет пластинчатого теплообменника. 3 реальных примера из практики.

Поговорим о расчетах теплообменников, это довольно непростой процесс, как бы ни казалось с первого взгляда. Сложность, как всегда кроется в деталях. При общении с заказчиками, мы часто слышим 3 основных вопроса:

  1. Какая цена теплообменника?
  2. За сколько времени вы его изготовите?
  3. Есть ли скидка?

Кажется все очень просто, посчитал теплообменник, уточнил сроки изготовления, договорился о приемлемой цене и готово. Но, на практике все выглядит немного сложнее…

Итак, мы получили заявку на подбор теплообменника – что происходит дальше? Первое общение с заказчиком – это звонок по телефону. Цель этого звонка, выяснить, какие данные есть у заказчика для расчета теплообменника. В обязательном порядке, за клиентом закрепляется инженер. Его задача определить параметры для расчета:

  1. Мощность теплообменного аппарата
  2. Типы рабочих сред
  3. Какой процесс будет происходить в теплообменнике (нагрев или охлаждение)
  4. Температуры рабочих сред на входе и выходе из теплообменника

Эти параметры может предоставить заказчик, заполнив опросный лист или просто сообщив их нам. Очень часто, данных не достаточно для расчета. В таком случае, наш инженер начинает работать с организациями и людьми, которые имеют прямое отношение к разработке тех. условий, при которых будет эксплуатироваться теплообменник (проектные институты, поставщики тепла, специалисты на объектах и т.д.). При этом он самостоятельно выясняет недостающие параметры и приступает к расчету теплообменника.

Для расчета используются специальные программы. Их разрабатывают ведущие производители теплообменных аппаратов. Собранные технические параметры вносятся в программу, где происходит расчет аппарата.

Программа для расчета пластинчатых теплообменников

Программа для расчета пластинчатых теплообменников

Мы подошли к этапу, когда все данные собраны и занесены в программу. Какой результат мы получим?
Для этого предлагаю рассмотреть реальный пример из нашей практики. К нам обратился заказчик из г. Волгограда. Он поставил задачу рассчитать пластинчатый теплообменник для системы отопления многоквартирного жилого дома. По техническому заданию теплообменник должен обладать следующими параметрами:

  1. Мощность – 400 кВт.
  2. Температура греющего теплоносителя – 95С
  3. Нагреваемый контур имеет график 60C/80C. Теплоноситель для потребителя необходимо нагреть до 80С
  4. Потери давления в теплообменнике 30 кПа по обоим контурам теплообменника
  5. Запас поверхности теплообменника – 15%

Наш инженер внес эти параметры в программу расчета. В результате мы получили теплообменный аппарат SN14-37. Расчет состоит из теплофизической части и чертежа теплообменника.

Расчет теплообменника 400 кВт

Мы используем только сертифицированные программы для подбора теплообменников. Благодаря этому можем гарантировать 100% правильность расчета.

Расчет теплообменника занимает от 15 до 30 минут. Сложные случаи применения, такие как: агрессивные среды, мощность более 5 МВт., теплообменники с нестандартными патрубками и т. д. могут занимать до 3-4 часов.

После того как расчет будет выполнен, наш специалист направит вам на согласование:

  1. Технический расчет теплообменника. Он включает в себя теплотехнический расчет и чертеж теплообменника.
  2. Коммерческое предложение с ценой и сроком изготовления аппарата
  3. Рекомендации по установке и эксплуатации

Мы проводим более 25 расчетов теплообменников в день. Эти расчеты затрагивают различные сферы применения, от стандартных (ГВС, отопление, теплый пол), до таких экзотических, как нагрев воды в аквариуме, майнинг и охлаждение воды в бассейне с моржом.
Давайте рассмотрим 3 примера расчета теплообменных аппаратов, выполненных для различных инженерных систем. Выясним особенности расчета каждого варианта.

    Теплообменник для системы ГВС
    При расчете этих теплообменников, ключевым параметром является пиковый расход горячей воды. Его можно определить, зная, сколько в системе точек водоразбора. Ниже представлен расчет теплообменника для системы ГВС с 30 точками. 20 точек могут работать одновременно – пиковый расход по горячей воде – 4,5 т./ч.

Расчет теплообменника для отопления

3. Теплообменник для нагрева бассейна
Расчет теплообменника для бассейна проводится по следующим основным параметрам: объем бассейна, площадь зеркала воды, открытый или закрытый бассейн и т.д. Эти данные позволяют определить мощность теплообменного аппарата. Давайте рассмотрим пример расчета теплообменника для нагрева воды в бассейне объемом 150 м3.

Расчет теплообменника для бассейна

В заключение, мы вынесем основные тезисы, которые помогут вам при подборе теплообменника:

  1. Особое внимание уделите определению расчетных параметров, на основании которых будет проводиться расчет – это может сэкономить ваши средства! Бывают ситуации, когда изменение температуры рабочей среды на несколько градусов, меняет цену теплообменника на несколько тысяч рублей.
  2. При сравнении расчетов от нескольких производителей. Обратите внимание на такие параметры как: площадь поверхности теплообмена, запас поверхности теплообмена в % и потери давления. Это параметры, которыми чаще всего манипулируют, чтобы снизить цену теплообменника.
  3. Также найдите в расчете пункт, где указан материал пластин и толщина пластин. Очевидно, что теплообменник с пластинами из нержавеющей стали AISI304 будет дешевле теплообменника с пластинами из AISI316. Это же касается и толщины пластин, она должна быть 0,5 мм. – это оптимальный вариант. Более тонкие пластины это маркетинговый ход, цель которого снизить цену теплообменника, при этом ухудшив его эксплуатационные свойства.
  4. Работайте с организациями, которые не первый год на рынке и имеют свой сервисный отдел. Это поможет вам в дальнейшем без проблем найти запасные комплектующие и провести промывку вашего теплообменника.
Читайте также  Электроводонагреватели для отопления дома

Надеемся, информация, изложенная в статье, поможет вам при выборе теплообменника. Если у вас возникнут какие-то сложности и вопросы – мы всегда готовы помочь. Наши специалисты объяснят, какие данные необходимы для расчета и помогут их правильно определить.

Базовые понятия теплообмена для расчета теплообменников

Когда проводится расчет теплообменников, используются базовые знания о законах теплообмена, открытые на сегодняшний день.

В частности используются такие понятия как удельная теплоемкость и теплосодержание (энтальпия), а также удельная теплота химических превращений (и фазовых превращений).

Под удельной теплоемкость понимается количество тепла, которое необходимо для нагрева одного килограмма вещества ровно на один градус. На основании данных о теплоемкости можно судить об интенсивности аккумулирования тепла.

При тепловых расчетах используются средняя теплоемкость, исчисляемую в заданном температурном интервале.

Под понятием удельной энтальпии понимается количество тепла, которое потребуется для нагрева одного килограмма от нуля до заданной температуры.

Под удельной теплотой химических превращений понимается то количество тепла, которое будет выделяться при химической трансформации одной единицы массы данного вещества.

Под удельной теплотой фазовых превращений понимается то количество тепла, которое будет поглощаться или выделяться при изменении агрегатного состояния единицы массы данного вещества.

Расчет теплообменников и различные методы составления теплового баланса

При расчете теплообменников могут использоваться внутренний и внешний методы составления теплового баланса. При внутреннем методе используются величины теплоемкостей. При внешнем методе используются величины удельных энтальпий.

При применении внутреннего метода тепловая нагрузка рассчитывается по разным формулам, в зависимости от характера протекания теплообменных процессов.

Если теплообмен происходит без каких-либо химических и фазовых превращений, а соответственно и без выделений или поглощений тепла.

Соответственно тепловая нагрузка рассчитывается по формуле

Если в процессе теплообмена происходит конденсация пара или испарение жидкости, протекают какие-либо химические реакции, то используется другая форму для вычисления теплового баланса.

При использовании внешнего метода расчет теплового баланса ведется на основании того, что в теплообменный аппарат за какую-то единицу времени поступает и выходит равное количество тепла.
Если при внутреннем методе используются данные о теплообменных процессах в самом агрегате, то при внешнем методе используются данные внешних показателей.

Для расчета теплового баланса по внешнему методу используется формула
.

Под Q1 подразумевается то количество тепла, которое поступает в агрегат и ходит из него за единицу времени.
Под подразумевается энтальпия веществ, которые входит в агрегат и выходят из него.

Можно также вычислить разность энтальпий для того, чтобы установить то количество тепла, которое было передано между разными средами. Для этого используется формула .

Если же в процессе теплообмена происходили какие-либо химические или фазовые превращения, используется формула.

Механизмы теплопередачи в расчете теплообменников

Теплообмен осуществляется посредством трех основных видов теплопередачи. Это конвекция, теплопроводность и излучение.

При теплообменных процессах, которые протекают по принципам механизма теплопроводности передача тепла происходит как перенос энергии упругих колебаний молекул и атомов. Данная энергия переходит от одних атомов к другим в направлении уменьшения.

При проведении расчетов параметров передачи тепла по принципу теплопроводности используется закон Фурье:.

Для вычисления количества тепла используются данные о времени прохождения потока, площади поверхности, градиенте температуры, а также о коэффициенте теплопроводности. Под градиентом температуры понимается ее изменение в направлении теплопередачи на одну единицу длины.

Под коэффициентом теплопроводности понимается скорость теплообмена, то есть то количество тепла, которое проходит через одну единицу поверхности в единицу времени.

При любых тепловых расчетах учитывается, что самый большой коэффициент теплопроводности имеют металлы. Различные твердые тела имеют гораздо меньший коэффициент. А у жидкостей этот показатель, как правило, ниже, чем у любого из твердых тел.

При расчете теплообменников, где передача тепла от одной среды к другой идет через стенку, также используется уравнение Фурье для получения данных о количестве передаваемого тепла. Оно вычисляется как количество тепла, которое проходит через плоскость с бесконечно малой толщиной:
.

Если проинтегрировать показатели температурных изменений по толщине стенки, получится

Исход из этого получается, что температура внутри стенки падает по закону прямой линии.

Конвекционный механизм передачи тепла: расчеты

Еще один механизм передачи тепла – конвекция. Это передача тепла объемами среды посредством их взаимного перемещения. При этом передача тепла от среды к стенке и наоборот, от стенке к рабочей среде называется теплоотдачей. Чтобы определить количество тепла, которое передается, используется закон Ньютона

В данной формуле a — это коэффициент теплоотдачи. При турбулентном движении рабочей среды этот коэффициент зависит от многих дополнительных величин:

  • физических параметров текучей среды, в частности теплоемкости, теплопроводности, плотности, вязкости;
  • условий омывания газом или жидкостью теплоотдающей поверхности, в частности скорости текучей среды, ее направления;
  • пространственных условий, которые ограничивают поток (длина, диаметр, форма поверхности, ее шероховатости).

Следовательно, коэффициент теплоотдачи — функция многих величин, что показано в формуле

Метод анализа размерностей позволяет вывести функциональную связь критериев подобия, которые характеризуют теплоотдачу при турбулентном характере движения потока в гладких, прямых и длинных трубах.

Это вычисляется по формуле
.

Коэффициент теплоотдачи в расчете теплообменников

В химической технологии нередко встречаются случаи обмена тепловой энергией между двумя текучими средами через разделяющую стенку. Теплообменный процесс проходит три стадии. Тепловой поток для установившегося процесса остается неизменным.

Проводится расчет теплового потока, проходящего от первой рабочей среды к стенке, затем через стенку теплопередающей поверхности и затем от стенки ко второй рабочей среде.

Соответственно для проведения расчетов используется три формулы:

В результате совместного решения уравнений получаем

и есть коэффициент теплопередачи.

Расчет средней разности температур

Когда при помощи теплового баланса определено необходимое количество тепла, необходимо провести расчет поверхности теплообмена (F).

При расчете необходимой теплообменной поверхности используется то же уравнение, что и при предыдущих расчетах:

В большинстве случаев температура рабочих сред будет меняться в процессе протекания теплообменных процессов. Значит вдоль теплообменной поверхности будет меняться разность температур. Поэтому проводится расчет средней разности температур. А в связи с тем, что изменение температур не линейно, рассчитывают логарифмическую разность
. В отличие от прямоточного потока, при противоточном движении рабочих сред необходимая площадь теплообменной поверхности должна быть меньше. Если в одном и том же ходу теплообменника используется и прямоточный, и противоточный потоки, разность температур определяется, исходя из соотношения
.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: