Расчет ростверка свайного фундамента

Расчет ростверка свайного фундамента

РЕКОМЕНДАЦИИ ПО РАСЧЕТУ ЖЕЛЕЗОБЕТОННЫХ РОСТВЕРКОВ СВАЙНЫХ ФУНДАМЕНТОВ ПОД КОЛОННЫ ЗДАНИЙ И СООРУЖЕНИЙ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ

Рекомендации содержат основные положения по расчету железобетонных ростверков свайных фундаментов под колонны зданий и сооружений промышленных предприятий. Приведены требования по расчету стаканных ростверков под сборные железобетонные колонны, плитных ростверков под монолитные железобетонные и стальные колонны.

Рекомендации предназначены для инженерно-технических работников проектных и строительных организаций.

"Рекомендации по расчету железобетонных ростверков свайных фундаментов под колонны зданий и сооружений промышленных предприятий" разработаны в развитие главы СНиП II-В.1-62* "Бетонные и железобетонные конструкции. Нормы проектирования".

Рекомендации содержат указания по расчету ростверков под сборные железобетонные колонны со "стаканным" сопряжением колонн с ростверком под монолитные железобетонные и стальные колонны.

Рекомендации разработаны Центральным научно-исследовательским и проектно-экспериментальным институтом промышленных зданий и сооружений ЦНИИ-промзданий (инженерами В.С.Балюковым, Б.Ф.Васильевым) и Научно-исследовательским институтом бетона и железобетона НИИЖБ (кандидатами техн. наук Н.Н.Коровиным, В.Н.Голосовым) при участии НИИ оснований и подземных сооружений НИИОПС (канд. техн. наук Б.В.Бахолдин).

Предназначены для инженерно-технических работников проектных организаций.

1. ОБЩИЕ УКАЗАНИЯ

1.1. Настоящие рекомендации по расчету монолитных железобетонных ростверков отдельных свайных фундаментов под колонны зданий и сооружений промышленных предприятий являются дополнением к "Руководству по проектированию свайных фундаментов", М., Стройиздат, 1971 г.

Рекомендации разработаны в соответствии с главой СНиП II-В.1-62* "Бетонные и железобетонные конструкции. Нормы проектирования" с развитием пп.7.62, 7.63 этих же норм, касающихся расчета на продавливание конструкций из тяжелого бетона. Рекомендации распространяются на ростверки квадратной и прямоугольной формы в плане с количеством свай в кусте от четырех и более.

1.2. Расчет ростверков производится по первому предельному состоянию (по несущей способности) на основное, дополнительное и особое сочетание расчетных нагрузок и в необходимых случаях — по третьему предельному состоянию (по раскрытию трещин) на основное и дополнительное сочетание нормативных нагрузок.

1.3. Расчет ростверков на сваях сплошного круглого сечения производится так же, как и на сваях квадратного сечения. При этом в расчете ростверка сечения круглых свай условно приводятся к сваям квадратного сечения, эквивалентного круглым сваям по площади, т.е. с размером стороны сечения, равным 0,89, где — диаметр свай.

2. РАСЧЕТ РОСТВЕРКОВ ПО ПРОЧНОСТИ

А. РАСЧЕТ РОСТВЕРКОВ ПО ПРОЧНОСТИ ПОД СБОРНЫЕ ЖЕЛЕЗОБЕТОННЫЕ КОЛОННЫ

2.1. Расчет ростверков по прочности под сборные железобетонные колонны со стаканным сопряжением колонн с ростверком производится: на продавливание ростверка колонной; на продавливание угловой сваей нижней плиты ростверка; по поперечной силе в наклонных сечениях; на изгиб ростверка; на местное сжатие (смятие) под торцами колонн. Помимо этого, проверяется прочность стакана ростверка.

Расчет ростверков на продавливание колонной

2.2. Расчет на продавливание центрально нагруженных железобетонных ростверков свайных фундаментов колонной производится из условия

, (1)

где расчетная продавливающая сила, равная сумме реакций всех свай, расположенных за пределами нижнего основания пирамиды продавливания. При этом реакции свай подсчитываются только от нормальной силы, действующей в сечении колонны у обреза ростверка;

— боковая поверхность пирамиды продавливания при высоте ее , где — рабочая высота сечения ростверка на проверяемом участке, принимаемая от верха нижней рабочей арматуры сетки до дна стакана;

— расчетное сопротивление бетона растяжению для железобетонных конструкций;

; ,

где — расстояние от плоскости грани колонны до плоскости ближайшей грани свай.

В преобразованном виде формула (1) при расчете на продавливание центрально нагруженных ростверков колонной прямоугольного сечения будет иметь следующий вид:

, (2)

где и размеры сечений колонны у подошвы;

— расстояние от плоскости грани колонны с размером до плоскости ближайшей грани свай, расположенных снаружи плоскости, проходящей по стороне колонны с размером ;

расстояние от плоскости грани колонны с размером до плоскости ближайшей грани свай, расположенных снаружи плоскости, проходящей по стороне колонны с размером ;

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Пособие по проектированию железобетонных ростверков свайных фундаментов под колонны зданий и сооружений составлено к СНиП 2.03.01-84 „Бетонные и железобетонные конструкции” и распространяется на проектирование монолитных ростверков квадратной и прямоугольной формы в плане, с кустами из двух, четырех и более свай, под сборные и монолитные железобетонные колонны и под стальные колонны.

Примечание. Свайные фундаменты с кустами из двух свай рекомендуется применять только в каркасных бескрановых зданиях при условии расположения свай в створе пролета здания и величине эксцентриситета приложения нагрузки в перпендикулярном направлении не превышающей 5 см.

При проектировании ростверков, предназначенных для эксплуатации в сейсмических районах, а также в агрессивных средах должны соблюдаться дополнительные требования, регламентированные соответствующими нормативными документами.

1.2. Ростверк является элементом свайного фундамента, опирающимся на куст свай (черт. 1.). Проектировать куст свай следует в соответствии со СНиП II-17-77 „Свайные фундаменты”.

Сопряжение ростверков со сборными железобетонными колоннами предусматривается стаканным (с подколонником или без него) с монолитными железобетонными колоннами — монолитным, со стальными колоннами — с помощью анкерных болтов.

Черт. 1. Схема образования пирамиды продавливания под сборной железобетонной колонной прямоугольного сечения

1.3. Расчет ростверков производится по предельным состояниям первой группы (по прочности) и по предельным состояниям второй группы (по раскрытию трещин).

Величины нагрузок и воздействий, значения коэффициентов надежности по нагрузке и коэффициентов сочетаний, а также подразделения нагрузок на постоянные и временные — длительные, кратковременные, особые — должны приниматься в соответствии с требованиями СНиП 2.01.07-85 "Нагрузки и воздействия" и СНиП 2.03.01-84 "Бетонные и железобетонные конструкции", а значения коэффициентов надежности по назначению — согласно „Правилам учета степени ответственности зданий и сооружений при проектировании конструкций”.

При определении нагрузок от колонн на ростверки следует учитывать увеличение моментов в месте заделки колонн от действия вертикальных нагрузок при прогибе колонн.

При расчете ростверков расчетные сопротивления бетона следует умножать на коэффициент условий работы бетона g b2, принимаемый равным 1,1 или 0,9 в зависимости от длительности действия нагрузок. Коэффициент условий работы бетона g b2 принимается равным 1.

1.4. Расчет ростверков на сваях сплошного круглого сечения производится так же, как и на сваях квадратного сечения. При этом в расчете ростверка сечения круглых свай условно приводятся к сваям квадратного сечения, эквивалентного круглым сваям по площади, т.е. с размером стороны сечения, равным 0,89 dsv, где dsv диаметр свай.

2. РАСЧЕТ РОСТВЕРКОВ ПО ПРОЧНОСТИ

А. РАСЧЕТ ПО ПРОЧНОСТИ РОСТВЕРКОВ ПОД СБОРНЫЕ ЖЕЛЕЗОБЕТОННЫЕ КОЛОННЫ

2.1. Расчет по прочности плитной части ростверков под сборные железобетонные колонны производится: на продавливание колонной; продавливание угловой сваей; по прочности наклонных сечений на действие поперечной силы; на изгиб по нормальному и наклонному сечениям; на местное сжатие (смятие) под торцами колонн. Помимо этого проверяется прочность стакана ростверка.

Расчет ростверков на продавливание колонной

2.2. Расчет на продавливание колонной центрально-нагруженных ростверков свайных фундаментов с кустами из четырех и более свай производится по формуле (1) из условия, что продавливание происходит по боковой поверхности пирамиды, высота которой равна расстоянию по вертикали от рабочей арматуры плиты до низа колонны, меньшим основанием служит площадь сечения колонны, а боковые грани, проходящие от наружных граней колонны до внутренних граней свай, наклонены к горизонтали под углом не менее 45° и не более угла, соответствующего пирамиде с c=0,4h (см. черт. 1):

где Fper — расчетная продавливающая сила, равная сумме реакций всех свай, расположенных за пределами нижнего основания пирамиды продавливания, определяемая из условия

При этом реакции свай подсчитываются только от продольной силы N, действующей в сечении колонны у верхней горизонтальной грани ростверка;

здесь n — число свай в ростверке;

n1 — число свай, расположенных за пределами нижнего основания пирамиды продавливания;

Rbt — расчетное сопротивление бетона растяжению для железобетонных конструкций с учетом коэффициента условий работы бетона;

h — рабочая высота сечения ростверка на проверяемом участке, равная расстоянию от рабочей арматуры плиты до низа колонны, условно расположенного на 5 см выше дна стакана;

иi полусумма оснований i-й боковой грани фигуры продавливания с числом граней m;

сi расстояние от грани колонны до боковой грани сваи, расположенной за пределами фигуры продавливания;

a — коэффициент, учитывающий частичную передачу продольной силы на плитную часть через стенки стакана, определяемый по формуле

здесь Af площадь боковой поверхности колонны, заделанной в стакан фундамента, определяемая по формуле

здесь bcol, hcol размеры сечения колонны;

hапс — длина заделки колонны в стакан фундамента.

При расчете на продавливание центрально-нагруженных ростверков колонной прямоугольного сечения формула (1) приобретает следующий вид:

c1 — расстояние от грани колонны с размером bcol до параллельной ей плоскости, проходящей по внутренней грани ближайшего ряда свай, расположенных за пределами нижнего основания пирамиды продавливания;

Читайте также  Мелкозаглубленный ленточный фундамент на пучинистых грунтах

c2 — расстояние от грани колонны с размером hcol до параллельной ей плоскости, проходящей по внутренней грани ближайшего ряда свай, расположенных за пределами нижнего основания пирамиды продавливания.

Отношение принимается не менее 1 и не более 2,5.

При сi>h ci принимается равным h; при сi<0,4h сi принимается равным 0,4h.

При расчете на продавливание колонной квадратного сечения центрально нагруженных ростверков при c1=с2 формула (4) будет иметь следующий вид:

При установке в пределах пирамиды продавливания поперечной арматуры расчет должен производиться из условия

но не более 2Fb. Сила Fb принимается равной правой части условия (1).

Сила Fsw определяется как сумма всех поперечных усилий, воспринимаемых хомутами, пересекающими боковые грани пирамиды продавливания, по формуле

где Rsw — расчетное сопротивление поперечной арматуры растяжению при расчете наклонных сечений на действие поперечной силы;

Asw — суммарная площадь сечения поперечной арматуры, пересекающей боковые грани пирамиды продавливания.

В этом случае реакции свай подсчитываются от продольной силы и момента, действующих в сечении колонны у верхней горизонтальной грани ростверка.

При моментах, действующих в поперечном и продольном направлениях, величина , определяется в каждом направлении отдельно; в расчет принимается большая из этих величин.

Примечание. При стаканном сопряжении колонны с ростверком и эксцентриситете продольной силы в колонне величину , допускается определять, принимая величину момента, передающегося на ростверк от колонны, равной Если при этом дно стакана располагается выше плитной части ростверка, должна быть дополнительно выполнена проверка ростверка на продавливание при полном моменте и соответствующей ему сумме реакций свай из условия, что меньшим основанием пирамиды продавливания служит площадь подколонника.

2.4. При сборных железобетонных двухветвевых колоннах, имеющих общий стакан, расчет ростверка на продавливание выполняется как при колонне со сплошным прямоугольным сечением, соответствующим внешним габаритам двухветвевой колонны (черт. 2).

Черт. 2. Схема образования пирамиды продавливания под сборной железобетонной двухветвевой колонной

2.5. При многорядном расположении свай (черт. 3) помимо расчета на продавливание колонной по пирамиде продавливания, боковые стороны которой проходят от наружной грани колонны до ближайших граней свай, должна быть проведена проверка на продавливание ростверка колонной в предположении, что продавливание происходит по поверхности пирамиды, две или все четыре боковые стороны которой наклонены под углом 45°; при этом реакции свай, находящихся в пределах площади нижнего основания пирамиды продавливания, не учитываются.

Черт. 3. Схема образования пирамид продавливания под сборной железобетонной колонной при многорядном расположении свай за наружными гранями колонны

2.6. Расчет на продавливание колонной центрально-нагруженных ростверков свайных фундаментов с кустами из двух свай (черт. 4) производится из условия

где Fper расчетная продавливающая сила, равная сумме реакций обеих свай от продольной силы N, действующей в колонне;

Rbt, h; c1; bcol, hcol, a — обозначения те же, что в формулах (1) и (3);

с2 — расстояние от плоскости грани колонны с размером hcol до наружной грани штатной части ростверка.

Черт. 4. Схема образования пирамиды продавливания под сборной железобетонной колонной в двухсвайном фундаменте

2.7. Расчет на продавливание колонной внецентренно нагруженных ростверков свайных фундаментов с кустами из двух свай также производится по формуле (8), но при этом расчетная величина продавливающей силы принимается равной Fper=2Fi, где Fi реакция наиболее нагруженной сваи от продольной силы N и момента М, действующих в колонне.

2.8. При стаканном сопряжении колонны с ростверком, когда стенки стакана подколонника имеют большую толщину (ds>0,75hp), или в штатных ростверках (черт. 5) при заглублении колонны в штатную часть ростверка не менее чем на 1/3 ее высоты, помимо расчета ростверка на продавливание в соответствии с пп. 2.2 — 2.7 следует производить расчет ростверка на раскалывание колонной от силы N по формуле

где N — продольная сила, действующая в сечении колонны у верхней горизонтальной грани ростверка;

m — коэффициент, вычисляемый по формуле

здесь s sid напряжение бокового обжатия, МПа, определяемое по формуле

здесь Ab наименьшая площадь вертикального сечения ростверка по оси колонны за вычетом вертикальной площади сечения стакана и площади трапеции, расположенной под колонной, с наклоненными под углом 45° сторонами (на черт. 5 площадь трапеции показана пунктирными линиями);

Rbt, a — обозначения те же, что в формуле (1);

а условное обозначение вводимой в расчет стороны сечения колонны (bcol или hcol);

Допускается принимать m =0,75.

Найденная по формуле (9) несущая способность ростверка по раскалыванию сравнивается с его несущей способностью на продавливание ( ) и принимается большая из этих величин.

Черт. 5. Схема свайного фундамента с плитным ростверком

При этом несущая способность ростверка, определенная по формуле (9), должна приниматься не более его несущей способности на продавливание колонной от верха ростверка от продольной силы и момента, действующих в этом сечении. Расчет на продавливание от верха ростверка производится по пп. 2.2 — 2.7 с введением в правую часть формул (1); (4); (5); (8) коэффициента 0,75 и принимая h равным расстоянию от рабочей арматуры плиты до верхней горизонтальной грани ростверка.

Расчет ростверков на продавливание угловой сваей

где Fai расчетная нагрузка на угловую сваю с учетом моментов в двух направлениях, включая влияние местной нагрузки (например, от стенового заполнения);

h01 — рабочая высота сечения на проверяемом участке, равная расстоянию от верха свай до верхней горизонтальной грани плиты ростверка или его нижней ступени.

иi полусумма оснований i-й боковой грани фигуры продавливания высотой h01, образующейся при продавливании плиты-ростверка угловой сваей;

b i коэффициент, определяемый по формуле

здесь k коэффициент, учитывающий снижение несущей способности плиты ростверка в угловой зоне.

В преобразованном виде формула (12) будет иметь вид

b01; b02 — расстояния от внутренних граней угловых свай до наружных граней плиты ростверка (черт. 6);

c01; c02 — расстояния от внутренних граней угловых свай до ближайших граней подколонника ростверка или до ближайших граней ступени при ступенчатом ростверке;

b 1 и b 2 — значения этих коэффициентов принимаются по табл. 1.

Расчеты для свайно-ростверковых фундаментов

Свайный фундамент без ростверка существовать не может, но не так просто его и построить. Для этого нужно произвести тщательные расчеты с соблюдением строительных норм и правил. Также здесь необходимо учитывать допустимые максимальные нагрузки на основание, ведь ростверк отвечает за аккумулирование веса целого здания и передачи его равномерно на каждую сваю. Поэтому проект строительства свайно-ростверкового фундамента должен иметь подробную схему расположения всех свай, их размеров, вида используемого материала, а также расчет вертикальной нагрузки на каждый элемент конструкции.

Расчет ростверка на продавливание

Любой проект свайно-ростверкового фундамента обязательно должен включать отдельный раздел с расчетом ростверка и сметой на строительство основания. Такие сметы делают люди, которые имеют высшее техническое образование, опыт и квалификацию. В проекте учитывается, к какой группе должен быть отнесен фундамент, а уже от группы зависит конечный расчет основания на продавливание.

Типы винтовых свай

Типы винтовых свай.

Что означает термин «продавливание»? Конструкция такого основания предусматривает наличие сплошного ростверка, под которым стоят сваи. На каждую сваю предусмотрена своя нагрузка, ее нужно учесть и рассчитать. Если нагрузка будет рассчитана неверно, тогда на одну сваю будет воздействовать слишком большая сила, а ростверк будет продавлен. А вместе с ним возможна деформация и самой сваи.

Расчет основания проводится по граничным состояниям 1 и 2 группы. К первой группе нужно отнести, в соответствии со строительными нормами, следующие параметры:

  • Прочность материалов, которые будут использоваться при производстве ростверка;
  • Особенности грунта, его несущие характеристики;
  • Нагрузка на основание при наличии нагрузок по горизонтали.

Ко второй группе относятся следующие показатели:

  • Наличие вертикальных нагрузок и их давление на ростверк;
  • Смещение, повороты несущих конструкций по горизонтали;
  • Наличие или появление трещин в проектируемом или существующем железобетонном свайном фундаменте.

Как правило, расчетную нагрузку на единичную сваю определяют с учетом равномерного распределения массы на все проектируемые сваи. Соответственно, ростверк при этом принимается как максимально жесткий.

Ростверки под колонны смежного расположения (расположение по соседству), а также аналогичные по конструкции и характеристикам ленточные фундаменты рассчитываются с учетом положений СНиП II-В.1-61 по ключевому предельному состоянию усилий. Но при этом определяются также и дополнительные нагрузки, которые могут возникать в процессе эксплуатации здания.

Также, при необходимости, проводится расчет по открытию трещин на основных и второстепенных свайных конструкциях. При расчетах не играет роли, ростверк с какими сваями проектируется — принцип расчета одинаковый для свай с круглым или квадратным сечением.

Схема армирования свайного ростверка

Схема армирования свайного ростверка.

Читайте также  Толщина арматуры для ленточного фундамента

Высоту ростверка на несущих железобетонных элементах рассчитывают по конкретным формулам. Как правило, минимальная высота должна составлять не менее 35 см, а ширина – от 45 см. Но это документальные данные, которые на практике существенно отличаются, а поэтому высоту расположения ростверка всегда рассчитывают практически, исходя от существующей на строительной площадке ситуации. Подошва ростверка принимается в пределах 300 мм или меньше, а высота плитной конструкции составляет 150 мм.

Стоит отметить, что форма будущего основания под свайный фундамент может напрямую зависеть от всех частей будущей постройки, количества используемых элементов, типа почвы и наличия грунтовых вод. Ведь проектировщик прекрасно понимает, что высота свай должна быть оптимальной, чтобы выдерживать нагрузки и от самого здания, и со стороны почвы.

Что нужно помнить при расчете свайно-ростверкового фундамента?

  1. Все нагрузки и возможные факторы влияния на сваи и ростверк таких оснований нужно учитывать, исходя из положений СНиПа. Значения, которые там указаны, нужно умножать на коэффициенты надежности, которые четко определены в «Правилах учета ответственности сооружений подобного типа в процессе проектирования зданий».
  2. Расчет ростверка проводится с учетом основной и осевой нагрузок, причем часто проектировщик сразу добавляет процент поправки в большую сторону с целью устранить дополнительные факторы риска.
  3. Также в расчете и при составлении будущей сметы на строительство основания нужно использовать существующие значения параметров почвы, а также приоритетных климатических условий в регионе.
  4. Нужно сразу учесть тип используемых свай.
  5. Проектировщик, который уже имеет достаточно опыта расчетов таких конструкций, принимает свайно-ростверковое основание как единую целую конструкцию и проводит расчет всего основания, а не каждого его элемента по-отдельности.
  6. Если на строительной площадке обнаружены проблемные почвы, плывуны или уже в проекте обнаружено наличие больших нагрузок на основание, тогда сразу нужно учесть все негативные факторы влияния. Также к сложным грунтам относятся почвы с высоким залеганием поверхностных вод.

Расчет конструкции на продавливание колонной из стали

Такой расчет используется только в тех случаях, когда предусматривается стальной монолитный ростверк. Как правило, его практикуют в промышленном строительстве. Где используются тяжелые материалы для возведения несущих стен и перекрытий. И в таких случаях в смете должны быть предусмотрены следующие расчеты:

  • Полный расчет на продавливание колоннами;
  • Расчет продавливания угловыми сваями;
  • Изгиб конструкции;
  • Локальное продавливание сталью.

Как правило, стальные ростверки отличаются сложностью в монтаже, ведь все элементы нужно сварить и затем проверить на прочность. Но в некоторых случаях только стальные материалы и помогут создать действительно прочное и надежное основание.

Расчет фундамента на изгиб

Многие строители не раз сталкивались с проблемой изгиба несущей конструкции через неверно подобранные материалы или ошибки в расчетах. Соответственно, смета уже никуда не годится, ее нужно оперативно переделывать и проводить новые расчеты. Поэтому в строительных нормах четко указано, что расчет на изгиб проводится только в сечении по грани колонны и по внешнему контуру ростверка.

Есть несколько методик расчетов на изгиб, но подбираются они в каждом конкретном случае индивидуально, исходя от внешних условий. Самый быстрый вариант – это суммирование всех моментов от реакций запроектированных свай, дополнительно учитываются локальные нагрузки.

Схема армированной сваи

Схема армированной сваи.

Но такая методика используется, если используются железобетонные сваи. А вот когда используется стальная свайная конструкция, тогда лучше брать методику расчета по сечению колонн. Также таким методом рассчитывается и необходимое количество, и допустимый максимальный диаметр арматуры.

Фактически, своими руками сделать правильный расчет таких специфических фундамента практически невозможно. Для этого нужно иметь не только строительное образование, но и огромный опыт работы строителем и проектировщиком.

Поэтому перед началом строительства дома лучше сразу попросить специалистов, чтобы они сами сделали рабочий проект будущего основания с указанными не только местами установки каждой сваи и ее допустимой длины и сечения, но и размеров ростверка. А тем более, что только специалисты четко укажут, из каких материалов лучше строить здание.

Свайно ростверковый фундамент расчет

Свайно ростверковый фундамент расчет

Методика расчета свайного буронабивного фундамента с ростверком

Расчет свайного фундамента выполняется в зависимости от его типа. Важно понимать, что расчет буронабивных свай будет отличаться от вычислений для винтовых. Но во всех случаях требуется выполнить предварительную подготовку, которая включает в себя сбор нагрузок и геологические изыскания.

Изучение характеристик грунта

Несущая способность буронабивной сваи будет во многом зависеть от прочностных характеристик основания. В первую очередь стоит выяснить прочностные показатели грунтов на участке. Для этого пользуются двумя методами: ручным бурением или отрывкой шурфов. Грунт разрабатывается на глубину на 50 см больше, чем предполагаемая отметка фундамента.

Схема буронабивного фундамента

Перед тем, как рассчитать свайный фундамент рекомендуется ознакомиться с ГОСТ «Грунты. Классификация» приложение А. Там представлены основные определения, исходя из которых, тип грунта можно определить визуально.

Далее потребуется таблица с указанием прочности грунта в зависимости от его типа и консистенции. Все необходимые для расчета характеристики приведены на картинках ниже.

Глинистая почва в области подошвы сваи Глинистая почва по длине сваи Песчаный грунт Крупнообломочные породы

Сбор нагрузок

Перед расчетом буронабивного фундамента также необходимо выполнить сбор нагрузок от всех вышележащих конструкций. Потребуется два отдельных вычисления:

  • нагрузка на сваю (с учетом ростверка);
  • нагрузка на ростверк.

Это необходимо потому, что отдельно будет выполнен расчет ростверка свайного фундамента и характеристик свай.

При сборе нагрузок необходимо уесть все элементы здания, а также временные нагрузки, к которым относится масса снегового покрова на крыше, а также полезная нагрузка на перекрытие от людей, мебели и оборудования.

Для расчета свайно-ростверкового фундамента составляется таблица, в которую вносится информация о массе конструкций. Чтобы рассчитать эту таблицу, можно пользоваться следующей информацией:

Собственный вес фундаментов и ростверка определяется в зависимости от геометрических размеров. Сначала требуется вычислить объем конструкции. Плотность железобетона при этом принимается равной 2500 кг/куб.м. Чтобы получить массу элемента, нужно объем умножить на плотность.

Каждую составляющую нагрузки нужно умножить на специальный коэффициент, который повышает надежность. Его подбирают в зависимости от материала и способа изготовления. Точное значение можно найти в таблице:

– изоляции, засыпок, стяжек, железобетона

– изготавливаемых на заводе

– изготавливаемых на участке строительства

Расчет сваи

На этом этапе вычислений необходимо определиться со следующими характеристиками:

Чаще всего размеры сечения определяют заранее, а остальные показатели подбирают исходя их имеющихся данных. Таким образом, результатом расчета должны стать расстояние между сваями и их длина.

Расположение арматуры

Всю массу здания, полученную на предыдущем этапе, требуется разделить на общую длину ростверка. При этом учитываются как наружные, так и внутренние стены. Результатом деления станет нагрузка на каждый пог.м фундаментов.

Несущую способность одного элемента фундамента можно найти по формуле:

P = (0,7 • R • S) + (u • 0,8 • fin • li), где:

  • P — нагрузка, которую без разрушения выдерживает одна свая;
  • R — прочность почвы, которую можно найти по таблицам, представленным ниже после изучения состава грунта;
  • S — площадь сечения сваи в нижней части, для круглой сваи формула выглядит следующим образом: S = 3,14*r2/2 (здесь r — это радиус окружности);
  • u — периметр элемента фундамента, можно найти по формуле периметра окружности для круглого элемента;
  • fin — сопротивление почвы по боковым сторонам элемента фундамента, см. таблицу для глинистых грунтов выше;
  • li — толщина слоя грунта, соприкасающегося с боковой поверхностью сваи (находят для каждого слоя почвы отдельно);
  • 0,7 и 0,8 — это коэффициенты.

Шаг фундаментов рассчитывается по более простой формуле: l = P/Q, где Q—это масса дома на пог.м фундамента, найденная ранее. Чтобы найти расстояние между буронабивными сваями в свету, из найденной величины просто вычитают ширину одного элемента фундамента.

При выполнении расчетов рекомендуется рассмотреть несколько вариантов с разными длинами элементов. После этого будет легко подобрать наиболее экономичный.

Армирование буронабивных свай выполняется в соответствии с нормативными документами. Арматурные каркасы состоят из рабочей арматуры и хомутов. Первая берет на себя изгибающие воздействия, а вторые обеспечивают совместную работу отдельных стержней.

Каркасы для буронабивных свай подбираются в зависимости от нагрузки и размеров сечения. Рабочая арматура устанавливается в вертикальном положении, для нее используют стальные стержни D от 10 до 16 мм. При этом выбирают материал класса А400 (с периодическим профилем). Для изготовления поперечных хомутов потребуется закупить гладкую арматуру класса А240. D = минимум 6-8 мм.

Сортамент стальной арматуры

Каркасы буронабивных свай устанавливаются так, чтобы металл не доходил за край бетона на 2-3 см. Это нужно для обеспечения защитного слоя, который предотвратить появление коррозии (ржавчины на арматуре).

Читайте также  Продухи в фундаменте деревянного дома

Размеры ростверка и его армирование

Элемент проектируется так же, как и ленточный фундамент. Высота ростверка зависит от того, насколько нужно поднять здание, а также от его массы. Самостоятельно можно выполнить расчет элемента, который опирается вровень с землей, или немного заглублен в нее. Основа расчетов висячего варианта слишком сложна для неспециалиста, поэтому такую работу стоит доверить профессионалам.

Пример правильной вязки арматурного каркаса

Размеры ростверка вычисляются так: В = М / (L • R), где:

  • B — это минимальное расстояние для опирания ленты (ширина обвязки);
  • М — масса здания без учета веса свай;
  • L — длина обвязки;
  • R — прочность почвы у поверхности земли.

Арматурные каркасы обвязки подбираются так же, как и для здания на ленточном фундаменте. В ростверке требуется установить рабочее армирование (вдоль ленты), горизонтальное поперечное, вертикальное поперечное.

Общую площадь сечения рабочего армирования подбирают так, чтобы она была не меньше 0,1% от сечения ленты. Чтобы подобрать сечение каждого стержня и их количество (четное), пользуются сортаментом арматуры. Также необходимо учитывать указания СП по наименьшим размерам.

Пример расчета

Чтобы лучше понять принцип выполнения вычислений, стоит изучить пример расчета. Здесь рассматривается одноэтажное здание из кирпича с вальмовой крышей из металлочерепицы. В здании предполагается наличие двух перекрытий. Оба изготавливаются из железобетона толщиной 220 мм. Размеры дома в плане 6 на 9 метров. Толщина стен составляет 380 мм. Высота этажа — 3,15 м (от пола до потолка — 2,8 м), общая длина внутренних перегородок — 10 м. Внутренних стен нет. На участке найдена тугопластичная супесь, пористость которой — 0,5. Глубина залегания этой супеси — 3,1 м. Отсюда по таблицам находим: R = 46 тонн/кв.м., fin = 1,2 тонн/кв.м. (для расчетов среднюю глубину принимаем равной 1 м). Снеговая нагрузка берется по значениям Москвы.

Сбор нагрузок делаем в форме таблицы. При этом не забываем про коэффициенты надежности.

площадь стен = 30 м*3м = 90 м2;

масса стен = (90 м2* 684)*1,2 = 73872 кг

Предварительно назначаем ростверк шириной 40 см, высотой 50 см. Длину сваи — 3000 мм, D сечения = 500 мм. Используем примерный шаг свай 1500 мм.

Чтобы рассчитать общее количество опор нужно 30 м (длину ростверка) поделить на 1,5 м (шаг свай) и прибавить 1 шт. При необходимости значение округляется до целого числа в сторону уменьшения. Получаем 21 шт.

Площадь одной сваи = 3,14 • 0,52/4 = 0,196 кв.м., периметр = 2 • 3,14 • 0,5 = 3,14 м.

Найдем массу ростверка: 0,4м • 0,5 м • 30 м • 2500 кг/куб.м.• 1,3 = 19500 кг.

Найдем массу свай: 21 • 3 м • 0,196 кв.м. • 2500 кг/куб.м. • 1,3 = 40131 кг.

Найдем массу всего здания: сумма из таблицы + масса свай + масса ростверка = 244167 кг или 244 тонн.

Для расчета потребуется нагрузка на пог.м ростверка = Q = 244 т/30 м = 8,1 т/м.

Расчет свай. Пример

Находим допустимое нагружение на каждый элемент по формуле указанной ранее:

P = (0,7 • 46 тонн/кв.м. • 0,196 кв.м.) + (3,14 м • 0,8 • 1,2 тонн/кв.м. • 3 м) = 15,35 т.

Шаг свай принимается равным P/Q = 15,35/8,1= 1,89 м. Округляем до 1,9 м. Если шаг получается слишком большим или маленьким, нужно проверить еще несколько вариантов, меняя при этом длину и диаметр фундаментов.

Для каркасов применяются пруты D = 14 мм и хомуты D = 8 мм.

Расчет ростверка. Пример

Нужно посчитать массу здания без учета свай. Отсюда М = 204 тонн.

Ширина ленты принимается равной М / (L • R) = 204/ (30 • 75) = 0,09 м.

Такой ростверк использовать нельзя. Свесы стен кирпичного здания с фундамента не должны превышать 4 см. Ширину назначаем конструктивно 400 мм. Высота остается равной 500 мм.

Армирование ростверка свайного фундамента:

  • Рабочее 0,1%*0,4*0,5 = 0,0002 кв.м. = 2 кв.см. Здесь достаточно будет 4 стержней диаметром 8 мм, но по нормативным требованиям используем минимально возможный диаметр 12 мм;
  • Горизонтальные хомуты — 6 мм;
  • Вертикальные хомуты — 6 мм.

Выполнение расчетов займет определенный промежуток времени. Но с их помощью можно сберечь деньги и время в процессе строительства.

Расчет несущей способности свайного фундамента

Методика расчёта необходимого количества свай для фундамента с исходными данными и конкретными примерами. Провести точный и правильный расчёт нагрузки свайного фундамента с учётом всех параметров, требований, норм и правил может каждый человек, знающий сопромат и разбирающийся в математике. На практике это сложно и не нужно неспециалисту, а возможные просчёты могут привести не только к убыткам. Но понять принцип расчёта поможет краткая упрощённая методика:

  • Подсчитывается общий вес сооружения.
  • Определяются снеговая и ветровая нагрузки исходя из средних обобщённых данных.
  • Подсчитывается полезная или бытовая нагрузка.
  • Подсчитывается общий вес ( сбор весов).
  • Ориентируясь на полную площадь строения и минимально допустимый шаг свай .определяется их общее максимальное количество
  • Подсчитывается суммарная площадь оснований свай.
  • Подбирается типоразмер и реальное количество свай.
  • На основе максимальных значений расстояний между сваями с учётом равного распределения нагрузок формируется план свайного поля.
  • С учётом распределения нагрузок от строения проектируется и рассчитывается ростверк .

Конкретные цифры для расчётов

В случае, когда сложно либо невозможно определить несущую способность грунта, принимается значение 2,5 кгсм2,  это усреднённый показатель для грунтов российской средней полосы.

Исходные данные для расчёта свайных фундаментов

Максимальный шаг винтовых свай для малоэтажного и хозяйственного индивидуального строительства:

  • строения из бревна или бруса 3 м;
  • сооружения каркасного либо сборно-щитового типа 3 м;
  • здания с несущими стенами из облегчённых блоков 2,5 м;
  • дома из кирпича и полнотелых бетонных блоков 2 м;
  • монолитные сооружения 1,7 м.

Для кустов свай под печи, колонны и подобные сооружения с сосредоточенной нагрузкой допустимое минимальное расстояние между сваями 1,5 м, для веранд и аналогичных построек 1,2 м.

Вес конструкций и частей зданий

Вес конструкций и частей зданий

Для сбора весов допустим приблизительный подсчёт. Ошибка в большую сторону приведёт к небольшому увеличению стоимости работ. Если же реальные нагрузки окажутся больше расчётных, то возможно разрушение фундамента и здания в целом.

Предпочтительный ориентир при отсутствии точной информации максимальное значение.

Стены :

  • кирпичные 600-1200кгм2;
  • бревенчатые 600 кгм2;
  • газо- и пенобетонные 400-900 кгм2;
  • каркасные и панельные 20-30 кгм2.

Крыши с учётом стропильной системы:

  • листовая сталь, в т.ч. металлопрофиль и металлочерепица 20-30 кгм2;
  • листы асбоцементные 60-80 кгм2;
  • рубероид и другие мягкие покрытия 30-50 кгм2.

Перекрытия:

  • деревянные с утеплителем 70-100 кгм2;
  • цокольные с утеплителем 100-150 кгм2;
  • монолитные армированные 500 кгм2;
  • плитные пустотелые 350 кгм2.

Снеговая и ветровая нагрузки подсчитываются с учётом средних региональных показателей с поправочными коэффициентами. Средняя эксплуатационная (полезная) нагрузка с учётом веса людей, оборудования, техники, мебели, домашней утвари — 100 кгм2. После сведения веса необходимо применить к результату коэффициент запаса 1,2.

Пример подсчёта потребности в сваях

пример расчёта

Для примера расчёта возьмём одноэтажный дачный дом:

  • с крышей из металлочерепицы;
  • стены бревенчатые;
  • перекрытия деревянные;
  • размер 6 Х 6 м;
  • без фундаментальной печи;
  • высота стен 2,4 м.

Расчет:

  • вес стен из бревна: 2,4 (высота) Х 24 (периметр) Х 600 = 34560;
  • вес перекрытий: 36 (площадь) Х2 Х 100 = 7200;
  • вес крыши: 54 (площадь) * 20 = 1080;
  • полезная нагрузка: 100 Х 36 = 3600.

Сборный вес дома: 34560+7200+1080+3600=46440 кг.

Снеговую нагрузку определяем для севера нашей страны по номинальной массе снежного покрова 190 кгм2. Отсюда расчет равен: 6х6х190=6840 кг.

Итоговый сборный вес: (46440+6840) Х 1,2 (запас) = 63936 кг.

Выбираем сваю самого популярного размера 89*300мм при её погружении на 2,5 м с несущей способностью 3,6 т, а сводный вес также переводим в тонны. 63,9 : 3,6 = 17,75 шт. — понадобится 18 штук винтовых свай.

Далее сваи распределяются по свайному полю с учётом первоочередной установки в углах, примыканиях и пересечениях. Количество буронабивных свай будет соответствовать расчёту количества свай винтовых при соблюдении аналогичных параметров.

Для расчёта нагрузок, подбора оптимальных параметров свай и их количества, а также расчёта ростверка, разработаны специальные компьютерные программы, например, StatPile и GeoPile, облегчающие и упрощающие задачу по устройству фундаментов.

Расчёт ростверка

Назначение ростверка равномерное распределение нагрузок на свайную конструкцию. Расчёты параметров ростверка учитывают силы продавливания основания в целом, по каждому углу и воздействия на изгиб.

Довольно сложные подсчёты застройщикам могут заменить стандартные решения, применение которых возможно только небольших индивидуальных строений:

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: